Spectral partitioning works: planar graphs and finite element meshes

Spectral partitioning methods use the Fiedler vector-the eigenvector of the second-smallest eigenvalue of the Laplacian matrix-to find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on bounded-degree planar graphs and finite element meshes-the classes of graphs to which they are usually applied. While active spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is O(/spl radic/n) for bounded-degree planar graphs and two-dimensional meshes and O(n/sup 1/d/) for well-shaped d-dimensional meshes. The heart of our analysis is an upper bound on the second-smallest eigenvalues of the Laplacian matrices of these graphs: we prove a bound of O(1/n) for bounded-degree planar graphs and O(1/n/sup 2/d/) for well-shaped d-dimensional meshes.

[1]  T. Hales Sphere packings, I , 1998, Discret. Comput. Geom..

[2]  Shang-Hua Teng,et al.  Provably Good Partitioning and Load Balancing Algorithms for Parallel Adaptive N-Body Simulation , 1998, SIAM J. Sci. Comput..

[3]  Shang-Hua Teng,et al.  Combinatorial aspects of geometric graphs , 1998, Comput. Geom..

[4]  S. Vavasis,et al.  Geometric Separators for Finite-Element Meshes , 1998, SIAM J. Sci. Comput..

[5]  Gary L. Miller,et al.  Separators for sphere-packings and nearest neighbor graphs , 1997, JACM.

[6]  Shang-Hua Teng,et al.  Disk packings and planar separators , 1996, SCG '96.

[7]  János Pach,et al.  Combinatorial Geometry , 2012 .

[8]  Andrew B. Kahng,et al.  Recent directions in netlist partitioning: a survey , 1995, Integr..

[9]  Gary L. Miller,et al.  A Delaunay based numerical method for three dimensions: generation, formulation, and partition , 1995, STOC '95.

[10]  Bruce Hendrickson,et al.  An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations , 1995, SIAM J. Sci. Comput..

[11]  Gary L. Miller,et al.  On the performance of spectral graph partitioning methods , 1995, SODA '95.

[12]  Vijay V. Vazirani,et al.  Finding separator cuts in planar graphs within twice the optimal , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[13]  Horst D. Simon,et al.  Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems , 1994, Concurr. Pract. Exp..

[14]  Satish Rao,et al.  Shallow excluded minors and improved graph decompositions , 1994, SODA '94.

[15]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[16]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[17]  David Eppstein,et al.  A deterministic linear time algorithm for geometric separators and its applications , 1993, SCG '93.

[18]  D. Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[19]  R. Nicolaides Direct discretization of planar div-curl problems , 1992 .

[20]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  Roy D. Williams,et al.  Performance of dynamic load balancing algorithms for unstructured mesh calculations , 1991, Concurr. Pract. Exp..

[22]  Gary L. Miller,et al.  A unified geometric approach to graph separators , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[23]  Gary L. Miller,et al.  Density graphs and separators , 1991, SODA '91.

[24]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[25]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[26]  D. Eppstein,et al.  Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[27]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[28]  Gary L. Miller,et al.  Separators in two and three dimensions , 1990, STOC '90.

[29]  Robin Thomas,et al.  A separator theorem for graphs with an excluded minor and its applications , 1990, STOC '90.

[30]  Bojan Mohar,et al.  Isoperimetric numbers of graphs , 1989, J. Comb. Theory, Ser. B.

[31]  Milena Mihail,et al.  Conductance and convergence of Markov chains-a combinatorial treatment of expanders , 1989, 30th Annual Symposium on Foundations of Computer Science.

[32]  F. Chung Diameters and eigenvalues , 1989 .

[33]  Frank Thomson Leighton,et al.  An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[34]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[35]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[36]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[37]  Ravi B. Boppana,et al.  Eigenvalues and graph bisection: An average-case analysis , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[38]  Feng Zhao,et al.  An {\it bf O(N)} Algorithm for Three-Dimensional N-body Simulations , 1987 .

[39]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[40]  Shahid H. Bokhari,et al.  A Partitioning Strategy for Nonuniform Problems on Multiprocessors , 1987, IEEE Transactions on Computers.

[41]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[42]  N. Alon Eigenvalues and expanders , 1986, Comb..

[43]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[44]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[45]  E. Barnes An algorithm for partitioning the nodes of a graph , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[46]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[47]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[48]  I. Fried Condition of finite element matrices generated from nonuniform meshes. , 1972 .

[49]  Kenneth M. Hall An r-Dimensional Quadratic Placement Algorithm , 1970 .

[50]  E. M. Andreev ON CONVEX POLYHEDRA IN LOBAČEVSKIĬ SPACES , 1970 .

[51]  E. M. Andreev ON CONVEX POLYHEDRA OF FINITE VOLUME IN LOBAČEVSKIĬ SPACE , 1970 .

[52]  James E. pLebensohn Geometry and the Imagination , 1952 .

[53]  W. H. Steele Points , 1898, The Dental register.

[54]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[55]  D. Du,et al.  Computing in Euclidean Geometry , 1995 .

[56]  Tony F. Chan,et al.  Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes , 1994 .

[57]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[58]  S. Teng Points, spheres, and separators: a unified geometric approach to graph partitioning , 1992 .

[59]  Alex POTHENy,et al.  SPECTRAL NESTED DISSECTION , 1992 .

[60]  Horst D. Simon,et al.  Partitioning of unstructured problems for parallel processing , 1991 .

[61]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[62]  T. Chan,et al.  A framework for the analysis and construction of domain decomposition preconditioners , 1988 .

[63]  Mark Jerrum,et al.  Conductance and the rapid mixing property for Markov chains: the approximation of permanent resolved , 1988, STOC '88.

[64]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[65]  Joe F. Thompson,et al.  Numerical grid generation: Foundations and applications , 1985 .

[66]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[67]  A. Hoffman,et al.  Partitioning, Spectra and Linear Programming , 1984 .

[68]  B. Parlett,et al.  On estimating the largest eigenvalue with the Lanczos algorithm , 1982 .

[69]  J. Gilbert Graph separator theorems and sparse Gaussian elimination , 1980 .

[70]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[71]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[72]  M. Fiedler Eigenvectors of acyclic matrices , 1975 .

[73]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[74]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[75]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[76]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[77]  B. Gelbaum,et al.  Problems in analysis , 1964 .

[78]  W. T. Tutte A THEOREM ON PLANAR GRAPHS , 1956 .

[79]  Feng Zhao An O(N) Algorithm for Three-dimensional N-body Simulations , 2022 .