Fine-scaled optical detection of nitrogen stress in grain crops

What is lacking in precision farming at present are more comprehensive and fast non-destructive methods for obtaining the data needed to prescribe varia*ble treatments. In precision farming there is a demand for sensors that can easily monitor crop nitrogen requirements throughout the growing season on a high resolution. Currently used optical measurement platforms like satellites, airplanes and hand-held sensors, do not meet the needs of precision agriculture for good nitrogen management possibilities. An automated sensor system mounted on a tractor was developed and used to detect crop nitrogen status optically. A line spectrograph was used to detect amount of nitrogen (kgN/ha) and chlorophyll (kg/ha) in a wheat crop (Triticum aestivum L.). By calculating the red edge inflection point of the plant spectra in the images, wheat crop nitrogen stress within small areas in the field could be detected. Spectrograph red edge was highly correlated with applied nitrogen to the wheat crop (0.90), with crop nitrogen uptake (0.89) and with chlorophyll amount in the crop (0.86). The average errors when estimating those variables with the red edge inflection point were -0.4% (24.15kgN/ha), -1% (17.25kgN/ha) and -10% (14.74kg/ha) respectively. This means that spectrograph red edge measurements of the wheat crop during the growing season can be a predictor of topdress nitrogen needs.