Interval algorithm for absolute value equations

We investigate the absolute value equations Ax−|x| = b. Based on ɛ-inflation, an interval verification method is proposed. Theoretic analysis and numerical results show that the new proposed method is effective.

[1]  O. Mangasarian,et al.  Absolute value equations , 2006 .

[2]  J. Rohn Systems of linear interval equations , 1989 .

[3]  Jiri Rohn,et al.  A theorem of the alternatives for the equation |Ax| − |B||x| = b , 2012, Optim. Lett..

[4]  Chao Zhang,et al.  Global and Finite Convergence of a Generalized Newton Method for Absolute Value Equations , 2009 .

[5]  Siegfried M. Rump,et al.  On the solution of interval linear systems , 1991, Computing.

[6]  Defeng Sun,et al.  Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems , 2002 .

[7]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[8]  Ramon E. Moore A Test for Existence of Solutions to Nonlinear Systems , 1977 .

[9]  Olvi L. Mangasarian,et al.  Knapsack feasibility as an absolute value equation solvable by successive linear programming , 2009, Optim. Lett..

[10]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[11]  Jiri Rohn,et al.  DESCRIPTION OF ALL SOLUTIONS OF A LINEAR COMPLEMENTARITY PROBLEM , 2009 .

[12]  Siegfried M. Rump,et al.  New Results on Verified Inclusions , 1985, Accurate Scientific Computations.

[13]  S. Rump Verified solution of large systems and global optimization problems , 1995 .

[14]  Jiri Rohn,et al.  A residual existence theorem for linear equations , 2010, Optim. Lett..

[15]  Jiri Rohn,et al.  An algorithm for solving the absolute value equation , 2009 .

[16]  G. Alefeld,et al.  Interval analysis: theory and applications , 2000 .

[17]  Siegfried M. Rump,et al.  Kleine Fehlerschranken bei Matrixproblemen , 1980 .

[18]  Günter Mayer,et al.  Epsilon-inflation in verification algorithms , 1995 .

[19]  Siegfried M. Rump,et al.  New Results on Verified Inclusions , 1985 .

[20]  Jiri Rohn,et al.  A theorem of the alternatives for the equation |Ax| − |B||x| = b , 2004, Optimization Letters.

[21]  Olvi L. Mangasarian,et al.  Absolute value programming , 2007, Comput. Optim. Appl..

[22]  Lou Caccetta,et al.  A globally and quadratically convergent method for absolute value equations , 2011, Comput. Optim. Appl..

[23]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[24]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[25]  Olvi L. Mangasarian,et al.  A generalized Newton method for absolute value equations , 2009, Optim. Lett..

[26]  Oleg A. Prokopyev,et al.  On equivalent reformulations for absolute value equations , 2009, Comput. Optim. Appl..