Interval algorithm for absolute value equations
暂无分享,去创建一个
[1] O. Mangasarian,et al. Absolute value equations , 2006 .
[2] J. Rohn. Systems of linear interval equations , 1989 .
[3] Jiri Rohn,et al. A theorem of the alternatives for the equation |Ax| − |B||x| = b , 2012, Optim. Lett..
[4] Chao Zhang,et al. Global and Finite Convergence of a Generalized Newton Method for Absolute Value Equations , 2009 .
[5] Siegfried M. Rump,et al. On the solution of interval linear systems , 1991, Computing.
[6] Defeng Sun,et al. Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems , 2002 .
[7] Ramon E. Moore. Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.
[8] Ramon E. Moore. A Test for Existence of Solutions to Nonlinear Systems , 1977 .
[9] Olvi L. Mangasarian,et al. Knapsack feasibility as an absolute value equation solvable by successive linear programming , 2009, Optim. Lett..
[10] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[11] Jiri Rohn,et al. DESCRIPTION OF ALL SOLUTIONS OF A LINEAR COMPLEMENTARITY PROBLEM , 2009 .
[12] Siegfried M. Rump,et al. New Results on Verified Inclusions , 1985, Accurate Scientific Computations.
[13] S. Rump. Verified solution of large systems and global optimization problems , 1995 .
[14] Jiri Rohn,et al. A residual existence theorem for linear equations , 2010, Optim. Lett..
[15] Jiri Rohn,et al. An algorithm for solving the absolute value equation , 2009 .
[16] G. Alefeld,et al. Interval analysis: theory and applications , 2000 .
[17] Siegfried M. Rump,et al. Kleine Fehlerschranken bei Matrixproblemen , 1980 .
[18] Günter Mayer,et al. Epsilon-inflation in verification algorithms , 1995 .
[19] Siegfried M. Rump,et al. New Results on Verified Inclusions , 1985 .
[20] Jiri Rohn,et al. A theorem of the alternatives for the equation |Ax| − |B||x| = b , 2004, Optimization Letters.
[21] Olvi L. Mangasarian,et al. Absolute value programming , 2007, Comput. Optim. Appl..
[22] Lou Caccetta,et al. A globally and quadratically convergent method for absolute value equations , 2011, Comput. Optim. Appl..
[23] Xiaojun Chen,et al. Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..
[24] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[25] Olvi L. Mangasarian,et al. A generalized Newton method for absolute value equations , 2009, Optim. Lett..
[26] Oleg A. Prokopyev,et al. On equivalent reformulations for absolute value equations , 2009, Comput. Optim. Appl..