Development of Vortex Filament Method for Wind Power Aerodynamics

Wind power is currently one of the cleanest and widely distributed renewable energy sources serving as an alternative to fossil fuel generated electricity. Exponential growth of wind turbines all around the world makes it apt for different research disciplines. The aerodynamics of a wind turbine is governed by the flow around the rotor, where the prediction of air loads on rotor blades in different operational conditions and its relation to rotor structural dynamics is crucial for design, development and optimization purposes. This leads us to focus on high-fidelity modeling of the rotor and wake aerodynamics. There are different methods for modeling the aerodynamics of a wind turbine with different levels of complexity and accuracy, such as the Blade Element Momentum (BEM) theory, Vortex method and Computational Fluid Dynamics (CFD). Historically, the vortex method has been widely used for aerodynamic analysis of airfoils and aircrafts. Generally, it may stand between the CFD and BEM methods in terms of the reliability, accuracy and computational efficiency. In the present work, a free vortex filament method for wind turbine aerodynamics was developed. Among different approaches for modeling the blade (e.g. a lifting line or a lifting surface) and wake (e.g. a prescribed or a free wake model), the Vortex Lattice Free Wake (VLFW) model known as the most accurate and computationally expensive vortex method was implemented. Because of the less restrictive assumptions, it could be used for unsteady load calculations, especially for time-varying flow environment which are classified according to the atmospheric conditions, e.g. wind shear and turbulent inflow together with the turbine structure such as yaw misalignment, rotor tilt and blade elastic deformation. In addition to the standard potential method for aerodynamic load calculation using the VLFW method, two additional methods, namely the 2D static airfoil data model and the dynamic stall model were implemented to increase capability of the free vortex wake method to predict viscous phenomena such as drag and separation using tabulated airfoil data. The implemented VLFW method was validated against the BEM and CFD methods, the GENUVP code by National Technical University of Athens (NTUA), Hono turbine measurement data and MEXICO wind tunnel measurements. The results showed that the VLFW model might be used as a suitable engineering method for wind turbine’s aerodynamics covering a broad range of operating conditions.

[1]  A. J. Landgrebe,et al.  Helicopter rotor wake geometry and its influence in forward flight. Volume 2: Wake geometry charts , 1983 .

[2]  T. A. Egolf,et al.  Helicopter Free Wake Prediction of Complex Wake Structures Under Blade-Vortex Interaction Operating Conditions , 1988 .

[3]  J. Gordon Leishman,et al.  Free-Vortex Filament Methods for the Analysis of Helicopter Rotor Wakes , 2002 .

[4]  V. M. Falkner,et al.  The Calculation of Aerodynamic Loading on Surfaces of Any Shape , 1943 .

[5]  Krishnamurty Karamcheti,et al.  Principles of ideal-fluid aerodynamics , 1966 .

[6]  A. J. Landgrebe,et al.  A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach , 1982 .

[7]  J. Sørensen General Momentum Theory for Horizontal Axis Wind Turbines , 2015 .

[8]  Leishman,et al.  Generalized Viscous Vortex Model for Application to Free-Vortex Wake and Aeroacoustic Calculations , 2002 .

[9]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[10]  Jens Nørkær Sørensen,et al.  General momentum theory for wind turbines at low tip speed ratios , 2011 .

[11]  J. Gordon Leishman,et al.  Flow visualization of compressible vortex structures using density gradient techniques , 1993 .

[12]  N. Troldborg Actuator Line Modeling of Wind Turbine Wakes , 2009 .

[13]  Jens Nørkær Sørensen,et al.  A global Navier-Stokes rotor prediction model , 1997 .

[14]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[15]  Peter Crimi,et al.  REPRESENTATION OF PROPELLER WAKES BY SYSTEMS OF FINITE CORE VORTICES. , 1965 .

[16]  Spyros G. Voutsinas,et al.  ROTORCRAFT AERODYNAMIC AND AEROACOUSTIC MODELLING USING VORTEX PARTICLE METHODS , 2002 .

[17]  W.R.M. Van Hoydonck Computation of Rotorcraft Wake Geometry using NURBS , 2013 .

[18]  A. Leonard Computing Three-Dimensional Incompressible Flows with Vortex Elements , 1985 .

[19]  Omar M. Knio,et al.  Numerical study of a three-dimensional vortex method , 1990 .

[20]  Sandeep Gupta,et al.  Development of a Time-Accurate Viscous Lagrangian Vortex Wake Model for Wind Turbine Applications , 2006 .

[21]  William John Macquorn Rankine,et al.  A manual of applied mechanics , 2022 .

[22]  G. Vatistas,et al.  A simpler model for concentrated vortices , 1991 .

[23]  S. G. Sadler Main rotor free wake geometry effects on blade air loads and response for helicopters in steady maneuvers. Volume 1: Theoretical formulation and analysis of results , 1972 .

[24]  Jean-Jacques Chattot,et al.  Helicoidal vortex model for wind turbine aeroelastic simulation , 2007 .

[25]  Spyros G. Voutsinas,et al.  Numerical Studies Of the Upstream Flow Field Around A Horizontal Axis Wind Turbine , 2015 .

[26]  Vladimir Cardos,et al.  Wind Turbine Aerodynamic Performance by Lifting Line Method , 1998 .

[27]  J. Sørensen Aerodynamic Aspects of Wind Energy Conversion , 2011 .

[28]  H. Madsen A CFD analysis of the actuator disc flow compared with momentum theory results , 1997 .

[29]  J. Gordon Leishman,et al.  STABILITY OF METHODS IN THE FREE-VORTEX WAKE ANALYSIS OF WIND TURBINES , 2004 .

[30]  Spyros G. Voutsinas,et al.  Development of Free Vortex Wake Method for Yaw Misalignment Effect on the Thrust Vector and Generated Power , 2014 .

[31]  Hamidreza Abedi Aerodynamic Loads On Rotor Blades , 2011 .

[32]  Spyros G. Voutsinas,et al.  Enhancement of Free Vortex Filament Method for Aerodynamic Loads on Rotor Blades , 2014 .

[33]  Hester Bijl,et al.  Comparing different dynamic stall models , 2013 .

[34]  J. Sørensen,et al.  Wind turbine wake aerodynamics , 2003 .

[35]  Todd R. Quackenbush,et al.  A new methodology for free wake analysis using curved vortex elements , 1987 .

[36]  R. Mikkelsen Actuator Disc Methods Applied to Wind Turbines , 2004 .

[37]  James L. Tangler,et al.  A Prescribed Wake Lifting Surface Hover Performance Analysis , 1977 .

[38]  T. S. R. Reddy,et al.  Analysis of an unswept propfan blade with a semiempirical dynamic stall model , 1989 .

[39]  Anton J. Landgrebe,et al.  An Analytical and Experimental Investigation of Helicopter Rotor Hover Performance and Wake Geometry Characteristics , 1971 .

[40]  M. Scully,et al.  Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads , 1975 .

[41]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[42]  M. D. Maisel,et al.  A free-wake rotor analysis including ground effect , 1987 .

[43]  Jean-Jacques Chattot Optimization of Wind Turbines Using Helicoidal Vortex Model , 2003 .

[44]  W.A.A.M. Bierbooms,et al.  A comparison between unsteady aerodynamic models , 1992 .

[45]  Wayne Johnson,et al.  Airloads and wake models for a comprehensive helicopter analysis , 1990 .

[46]  Aviv Rosen,et al.  Free Wake Model of Hovering Rotors Having Straight or Curved Blades , 1988 .

[47]  Gregoire Stephane Winckelmans Topics in vortex methods for the computation of three- and two-dimensional incompressible unsteady flows , 1989 .

[48]  Andrew R Trenka,et al.  DEVELOPMENT OF A METHOD FOR PREDICTING THE PERFORMANCE AND STRESSES OF VTOL-TYPE PROPELLERS , 1966 .

[49]  Ludwig Prandtl,et al.  Applications of Modern Hydrodynamics to Aeronautics , 1923 .

[50]  J. Katz,et al.  Low-Speed Aerodynamics , 1991 .

[51]  A. va. Garrel Requirements for a wind turbine aerodynamics simulation module : version 1 , 2001 .

[52]  J. Sørensen,et al.  Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches , 2010, Journal of Fluid Mechanics.

[53]  William Frederick Durand Aerodynamic theory : a general review of progress under a grant of the Guggenheim Fund for the promotion of aeronautics , 1934 .

[54]  Frank N. Coton,et al.  Dynamic Prescribed Vortex Wake Model for AERODYN/FAST , 2008 .

[55]  Chengjian He,et al.  A Viscous Vortex Particle Model for Rotor Wake and Interference Analysis , 2008 .

[56]  Jens Nørkær Sørensen,et al.  Rotor theories by Professor Joukowsky: Momentum theories , 2015 .

[57]  Louis Rosenhead,et al.  The Spread of Vorticity in the Wake Behind a Cylinder , 1930 .

[58]  A. Leonard Vortex methods for flow simulation , 1980 .

[59]  H. Glauert The elements of aerofoil and airscrew theory , 1926 .

[60]  Jens Nørkær Sørensen,et al.  The rotor theories by Professor Joukowsky: Vortex theories , 2015 .

[61]  J. C. Gohard Free wake analysis of wind turbine aerodynamics. Wind energy conversion. ASRL-TR-184-14 , 1978 .

[62]  Jens Nørkær Sørensen,et al.  Numerical Modeling of Wind Turbine Wakes , 2002 .

[63]  M P Scully,et al.  Helicopter Rotor Wake Geometry and Airloads and Helicopter Rotor Wakes , 1972 .

[64]  A. Leonard,et al.  Numerical simulation of interacting three-dimensional vortex filaments , 1975 .

[65]  J. Gordon Leishman,et al.  A Reynolds Number-Based Blade Tip Vortex Model , 2007 .

[66]  S. Pesmajoglou,et al.  Prediction of aerodynamic forces on horizontal axis wind turbines in free yaw and turbulence , 2000 .

[67]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[68]  F. N. Coton,et al.  The prediction of horizontal axis wind turbine performance in yawed flow using an unsteady prescribed wake model , 1999 .

[69]  Donald Bower Bliss,et al.  The dynamics of curved rotational vortex lines. , 1970 .

[70]  David R. Clark,et al.  The Free Wake Analysis A Method For The Prediction Of Helicopter Rotor Hovering Performance. , 1969 .

[71]  Spyros G. Voutsinas,et al.  Development of Free Vortex Wake Method for Aerodynamic Loads on Rotor Blades , 2014 .

[72]  Martin Otto Laver Hansen,et al.  Aerodynamics of Wind Turbines , 2001 .

[73]  Valery Okulov,et al.  The Betz–Joukowsky limit: on the contribution to rotor aerodynamics by the British, German and Russian scientific schools , 2012 .

[74]  S. G. Sadler A method for predicting helicopter wake geometry, wake-induced flow and wake effects on blade airloads , 1971 .

[75]  Anton J. Landgrebe,et al.  An analytical method for predicting rotor wake geometry , 1969 .

[76]  J. Gordon Leishman,et al.  Principles of Helicopter Aerodynamics , 2000 .

[78]  Spyros G. Voutsinas,et al.  Vortex methods in aeronautics: how to make things work , 2006 .

[79]  B. Koren,et al.  Review of computational fluid dynamics for wind turbine wake aerodynamics , 2011 .

[80]  Spyros G. Voutsinas,et al.  VORTEX METHOD APPLICATION FOR AERODYNAMIC LOADS ON ROTOR BLADES , 2013 .

[81]  D. Kocurek,et al.  Lifting surface performance analysis for horizontal axis wind turbines , 1987 .

[82]  J. G. Leishman,et al.  Correlation of Helicopter Rotor Tip Vortex Measurements , 2000 .

[83]  Jean-Jacques Chattot,et al.  A coupled Navier–Stokes/Vortex–Panel solver for the numerical analysis of wind turbines , 2006 .

[84]  W. Froude On the elementary relation between pitch, slip, and propulsive efficiency , 1920 .