Parameter Estimation Using Interval Computations

Parameter estimation is the problem of finding the values of the unknowns of a mathematical model for simulating a complex system. A model is generally given by differential equations or systems of equations or inequalities. Interval computations are numerical computations over sets of real numbers. In this paper intervals are used to model uncertainty in parameter estimation problems---for instance, some noise associated with measured data. Interval-based algorithms using consistency techniques and local search are developed. The goal is to reliably approximate the set of consistent values of parameters by inner and outer intervals. Such computations allow one to take into account all possible decisions. Applications for pharmacokinetics, biology, and census are described. Finally, a set of experimental results is discussed.

[1]  C. Bendtsen FADBAD, a flexible C++ package for automatic differentiation - using the forward and backward method , 1996 .

[2]  Jorge Cruz,et al.  Constraint Reasoning for Differential Models , 2005, Frontiers in Artificial Intelligence and Applications.

[3]  R. Lohner Einschliessung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen , 1988 .

[4]  Frédéric Goualard,et al.  Revising Hull and Box Consistency , 1999, ICLP.

[5]  P. Eijgenraam The Solution of Initial Value Problems Using Interval Arithmetic , 1981 .

[6]  Pascal Van Hentenryck,et al.  CLP(Intervals) Revisited , 1994, ILPS.

[7]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[8]  Gregory S. Ammar,et al.  Exponential interpolation: theory and numerical algorithms , 1991 .

[9]  Luc Jaulin,et al.  Interval constraint propagation with application to bounded-error estimation , 2000, Autom..

[10]  Pascal Van Hentenryck,et al.  Optimal Pruning in Parametric Differential Equations , 2001, CP.

[11]  Frédéric Goualard,et al.  Universally Quantified Interval Constraints , 2000, CP.

[12]  L. Granvilliers,et al.  Realpaver User's Manual , 2022 .

[13]  Ansi Ieee,et al.  IEEE Standard for Binary Floating Point Arithmetic , 1985 .

[14]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[15]  Guido D. Salvucci,et al.  Ieee standard for binary floating-point arithmetic , 1985 .

[16]  Klaus Schittkowski,et al.  Numerical Data Fitting in Dynamical Systems , 2002 .

[17]  Nedialko S. Nedialkov,et al.  Validated solutions of initial value problems for ordinary differential equations , 1999, Appl. Math. Comput..

[18]  Hélène Collavizza,et al.  Extending Consistent Domains of Numeric CSP , 1999, IJCAI.

[19]  P. Hartman Ordinary Differential Equations , 1965 .

[20]  A. Neumaier Interval methods for systems of equations , 1990 .

[21]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[22]  Pascal Van Hentenryck,et al.  Consistency Techniques in Ordinary Differential Equations , 1998, Constraints.

[23]  Ole Stauning Enclosing solutions of ordinary differential equations: With applications , 1996 .

[24]  Kaj Madsen,et al.  Automatic Validation of Numerical Solutions , 1997 .

[25]  Patrice Boizumault,et al.  k-relevant Explanations for Constraint Programming , 2003, FLAIRS.

[26]  Pedro Barahona,et al.  Global Hull Consistency with Local Search for Continuous Constraint Solving , 2001, EPIA.

[27]  M. H. van Emden,et al.  Interval arithmetic: From principles to implementation , 2001, JACM.

[28]  N. Nedialkov,et al.  Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation , 1999 .

[29]  Eric Walter,et al.  Set inversion via interval analysis for nonlinear bounded-error estimation , 1993, Autom..

[30]  C. Bendtsen,et al.  TADIFF , A FLEXIBLE C + + PACKAGE FOR AUTOMATIC DIFFERENTIATION using Taylor series expansion , 1997 .

[31]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[32]  R. G. Cornell,et al.  A Method for Fitting Linear Combinations of Exponentials , 1962 .

[33]  M. Gibaldi,et al.  Pharmacokinetics, Second Edition , 1982 .

[34]  John D. Pryce,et al.  An Effective High-Order Interval Method for Validating Existence and Uniqueness of the Solution of an IVP for an ODE , 2001, Reliab. Comput..