Bayesian Generalized Kernel Mixed Models
暂无分享,去创建一个
[1] A. Rukhin. Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.
[2] Robert Kohn,et al. Nonparametric regression using linear combinations of basis functions , 2001, Stat. Comput..
[3] Alexander J. Smola,et al. Sparse Greedy Gaussian Process Regression , 2000, NIPS.
[4] Matthias W. Seeger,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[5] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[6] B. Silverman,et al. Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .
[7] Ji Zhu,et al. Kernel Logistic Regression and the Import Vector Machine , 2001, NIPS.
[8] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[9] Edward Lloyd Snelson,et al. Flexible and efficient Gaussian process models for machine learning , 2007 .
[10] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[11] D. Madigan,et al. Bayesian Model Averaging for Linear Regression Models , 1997 .
[12] David Barber,et al. Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[13] Neil D. Lawrence,et al. Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.
[14] P. Green,et al. Bayesian Variable Selection and the Swendsen-Wang Algorithm , 2004 .
[15] Malay Ghosh,et al. Bayesian nonlinear regression for large p small n problems , 2012, J. Multivar. Anal..
[16] P. McCullagh,et al. Generalized Linear Models , 1992 .
[17] P. Diggle,et al. Model-based geostatistics (with discussion). , 1998 .
[18] George Eastman House,et al. Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .
[19] T. C. Haas,et al. Model-based geostatistics. Discussion. Authors' reply , 1998 .
[20] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[21] Matthew West,et al. Bayesian factor regression models in the''large p , 2003 .
[22] N. L. Johnson,et al. Multivariate Analysis , 1958, Nature.
[23] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[24] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[25] S. Mukherjee,et al. Nonparametric Bayesian Kernel Models , 2007 .
[26] Zhihua Zhang,et al. Bayesian Multicategory Support Vector Machines , 2006, UAI.
[27] G. Casella,et al. The Bayesian Lasso , 2008 .
[28] Stephen P. Brooks. Quantitative convergence assessment for Markov chain Monte Carlo via cusums , 1998, Stat. Comput..
[29] C. Holmes,et al. Bayesian auxiliary variable models for binary and multinomial regression , 2006 .
[30] A. P. Dawid,et al. Regression and Classification Using Gaussian Process Priors , 2009 .
[31] Tom Minka,et al. Expectation Propagation for approximate Bayesian inference , 2001, UAI.
[32] Sayan Mukherjee,et al. Characterizing the Function Space for Bayesian Kernel Models , 2007, J. Mach. Learn. Res..
[33] Marina Vannucci,et al. Bayesian Variable Selection in Multinomial Probit Models to Identify Molecular Signatures of Disease Stage , 2004, Biometrics.
[34] Sp Brooks. Quantitative convergence assessment for MCMC via CUSUMS , 1998 .
[35] Michael I. Jordan,et al. Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.
[36] D. Harville. Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .
[37] David B. Dunson,et al. NONPARAMETRIC BAYES KERNEL-BASED PRIORS FOR FUNCTIONAL DATA ANALYSIS , 2009 .
[38] Peter Sollich,et al. Bayesian Methods for Support Vector Machines: Evidence and Predictive Class Probabilities , 2002, Machine Learning.
[39] Chris Hans. Bayesian lasso regression , 2009 .
[40] Edward Y. Chang,et al. Semiparametric Regression Using Student $t$ Processes , 2007, IEEE Transactions on Neural Networks.
[41] Zhihua Zhang,et al. Posterior Consistency of the Silverman g-prior in Bayesian Model Choice , 2008, NIPS.
[42] G. Wahba. Spline models for observational data , 1990 .
[43] Yi Lin. Multicategory Support Vector Machines, Theory, and Application to the Classification of . . . , 2003 .
[44] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[45] Gunnar Rätsch,et al. Soft Margins for AdaBoost , 2001, Machine Learning.
[46] Qing Li,et al. The Bayesian elastic net , 2010 .
[47] R. Parker,et al. Discussion of Dr Silverman''s paper , 1985 .
[48] R. Kohn,et al. Nonparametric regression using Bayesian variable selection , 1996 .
[49] E. George,et al. APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .
[50] Mário A. T. Figueiredo. Adaptive Sparseness for Supervised Learning , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[51] B. Mallick,et al. Bayesian classification of tumours by using gene expression data , 2005 .
[52] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[53] James G. Scott,et al. The horseshoe estimator for sparse signals , 2010 .
[54] Mark Girolami,et al. Variational Bayesian Multinomial Probit Regression with Gaussian Process Priors , 2006, Neural Computation.
[55] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[56] M. Clyde,et al. Mixtures of g Priors for Bayesian Variable Selection , 2008 .