Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach

This technical note presents necessary and sufficient conditions for the stability and stabilization of fractional-order interval systems. The results are obtained in terms of linear matrix inequalities. Two illustrative examples are given to show that our results are effective and less conservative for checking the robust stability and designing the stabilizing controller for fractional-order interval systems.

[1]  J. Sabatier,et al.  LMI Tools for Stability Analysis of Fractional Systems , 2005 .

[2]  Chyi Hwang,et al.  A numerical algorithm for stability testing of fractional delay systems , 2006, Autom..

[3]  I. Podlubny Fractional-Order Systems and -Controllers , 1999 .

[4]  S. Westerlund,et al.  Capacitor theory , 1994 .

[5]  B. d'Andrea-Novel,et al.  Observer-based controllers for fractional differential systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[6]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[7]  I. Podlubny Fractional differential equations , 1998 .

[8]  Anthony N. Michel,et al.  Stability of viscoelastic control systems , 1987 .

[9]  Y. Chen,et al.  A comparative introduction of four fractional order controllers , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[10]  M. Nakagawa,et al.  Basic Characteristics of a Fractance Device , 1992 .

[11]  Manuel Ortigueira,et al.  Special Issue on Fractional signal Processing and applications , 2003 .

[12]  Jonathan R. Partington,et al.  Analysis of fractional delay systems of retarded and neutral type , 2002, Autom..

[13]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[14]  Yangquan Chen,et al.  Robust stability check of fractional order linear time invariant systems with interval uncertainties , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[15]  I. Petersen A stabilization algorithm for a class of uncertain linear systems , 1987 .

[16]  R. Feynman,et al.  RECENT APPLICATIONS OF FRACTIONAL CALCULUS TO SCIENCE AND ENGINEERING , 2003 .

[17]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[18]  Y. Chen,et al.  Conservatism-free Robust Stability Check of Fractional-order Interval Linear Systems , 2008 .

[19]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[20]  José António Tenreiro Machado,et al.  Fractional signal processing and applications , 2003, Signal Process..

[21]  Anissa Zergaïnoh-Mokraoui,et al.  State-space representation for fractional order controllers , 2000, Autom..

[22]  YangQuan Chen,et al.  Stability of linear time invariant systems with interval fractional orders and interval coefficients , 2004, Second IEEE International Conference on Computational Cybernetics, 2004. ICCC 2004..

[23]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[24]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[25]  Yangquan Chen,et al.  Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality , 2007, Appl. Math. Comput..

[26]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[27]  Manuel Duarte Ortigueira,et al.  Introduction to fractional linear systems. Part 1. Continuous-time case , 2000 .