Joint prediction in MST-style discourse parsing for argumentation mining

We introduce a new approach to argumentation mining that we applied to a parallel German/English corpus of short texts annotated with argumentation structure. We focus on structure prediction, which we break into a number of subtasks: relation identification, central claim identification, role classification, and function classification. Our new model jointly predicts different aspects of the structure by combining the different subtask predictions in the edge weights of an evidence graph; we then apply a standard MST decoding algorithm. This model not only outperforms two reasonable baselines and two datadriven models of global argument structure for the difficult subtask of relation identification, but also improves the results for central claim identification and function classification and it compares favorably to a complex mstparser pipeline.

[1]  Marc Moens,et al.  Articles Summarizing Scientific Articles: Experiments with Relevance and Rhetorical Status , 2002, CL.

[2]  Chris Reed,et al.  Mining Arguments From 19th Century Philosophical Texts Using Topic Based Modelling , 2014, ArgMining@ACL.

[3]  Daniel Marcu,et al.  A Machine Learning Approach for Identification Thesis and Conclusion Statements in Student Essays , 2003, Comput. Humanit..

[4]  James B. Freeman,et al.  Argument Structure: Representation and Theory , 2011, Argumentation Library.

[5]  Graeme Hirst,et al.  Classifying arguments by scheme , 2011, ACL.

[6]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[7]  Simone Teufel,et al.  The Structure of Scientific Articles - Applications to Citation Indexing and Summarization , 2010, CSLI Studies in Computational Linguistics.

[8]  A. Peldszus An Annotated Corpus of Argumentative Microtexts , 2015 .

[9]  Vincent Ng,et al.  Stance Classification of Ideological Debates: Data, Models, Features, and Constraints , 2013, IJCNLP.

[10]  Marie-Francine Moens,et al.  Argumentation mining , 2011, Artificial Intelligence and Law.

[11]  Koby Crammer,et al.  Online Large-Margin Training of Dependency Parsers , 2005, ACL.

[12]  Chris Reed,et al.  Argumentation Schemes , 2008 .

[13]  Simone Teufel,et al.  Robust Argumentative Zoning for Sensemaking in Scholarly Documents , 2009, NLP4DL/AT4DL.

[14]  Pascal Denis,et al.  Constrained Decoding for Text-Level Discourse Parsing , 2012, COLING.

[15]  Bernd Bohnet,et al.  Very high accuracy and fast dependency parsing is not a contradiction , 2010, COLING 2010.

[16]  Claire Cardie,et al.  Identifying Appropriate Support for Propositions in Online User Comments , 2014, ArgMining@ACL.

[17]  Dietrich Rebholz-Schuhmann,et al.  Automatic recognition of conceptualization zones in scientific articles and two life science applications , 2012, Bioinform..

[18]  Iryna Gurevych,et al.  Identifying Argumentative Discourse Structures in Persuasive Essays , 2014, EMNLP.

[19]  Manfred Stede,et al.  From Argument Diagrams to Argumentation Mining in Texts: A Survey , 2013, Int. J. Cogn. Informatics Nat. Intell..

[20]  Nicholas Asher,et al.  Annotation for and Robust Parsing of Discourse Structure on Unrestricted Texts , 2007 .

[21]  Andreas Peldszus,et al.  Towards segment-based recognition of argumentation structure in short texts , 2014, ArgMining@ACL.

[22]  James B. Freeman,et al.  Dialectics and the Macrostructure of Arguments , 1991 .

[23]  Fernando Pereira,et al.  Non-Projective Dependency Parsing using Spanning Tree Algorithms , 2005, HLT.