Ultrafast-switching of an all-solid-state electric double layer transistor with a porous yttria-stabilized zirconia proton conductor and the application to neuromorphic computing

[1]  K. Terabe,et al.  Accelerated/decelerated dynamics of the electric double layer at hydrogen-terminated diamond/Li+ solid electrolyte interface , 2023, Materials Today Physics.

[2]  W. Wang,et al.  Recent advances in neuromorphic transistors for artificial perception applications , 2022, Science and technology of advanced materials.

[3]  W. Cho,et al.  Time-Dependent Sensitivity Tunable pH Sensors Based on the Organic-Inorganic Hybrid Electric-Double-Layer Transistor , 2022, International journal of molecular sciences.

[4]  K. Terabe,et al.  A Redox-based Ion-Gating Reservoir, Utilizing Double Reservoir States in Drain and Gate Nonlinear Responses , 2022, 2208.06142.

[5]  K. Terabe,et al.  Edge-of-chaos learning achieved by ion-electron–coupled dynamics in an ion-gating reservoir , 2022, Science advances.

[6]  Bo Zhang,et al.  Hierarchically Self‐Assembled MOF Network Enables Continuous Ion Transport and High Mechanical Strength , 2022, Advanced Energy Materials.

[7]  K. Terabe,et al.  The electric double layer effect and its strong suppression at Li+ solid electrolyte/hydrogenated diamond interfaces , 2021, Communications Chemistry.

[8]  Z. Kuncic,et al.  Avalanches and edge-of-chaos learning in neuromorphic nanowire networks , 2021, Nature Communications.

[9]  Linghai Xie,et al.  Thin-film transistors for emerging neuromorphic electronics: fundamentals, materials, and pattern recognition , 2021 .

[10]  Luhan Ye,et al.  A dynamic stability design strategy for lithium metal solid state batteries , 2021, Nature.

[11]  Pengcheng Zhou,et al.  Ferroelectric Synaptic Transistor Network for Associative Memory , 2021, Advanced Electronic Materials.

[12]  Lin Xu,et al.  Flexible Nanowire Cathode Membrane with Gradient Interfaces and Rapid Electron/Ion Transport Channels for Solid‐State Lithium Batteries , 2021, Advanced Energy Materials.

[13]  Feng Shao,et al.  Exploration of Nafion for the Electric-Double-Layer Gating of Metal-Oxide Thin Film Transistors , 2021, ECS Journal of Solid State Science and Technology.

[14]  W. Cho,et al.  CMOS-compatible synaptic transistor gated by chitosan electrolyte-Ta2O5 hybrid electric double layer , 2020, Scientific Reports.

[15]  Wei D. Lu,et al.  Filament‐Free Bulk Resistive Memory Enables Deterministic Analogue Switching , 2020, Advanced materials.

[16]  R. Waser,et al.  Design of defect-chemical properties and device performance in memristive systems , 2020, Science Advances.

[17]  Kenji Watanabe,et al.  Charge-carrier mobility in hydrogen-terminated diamond field-effect transistors , 2020, 2001.11831.

[18]  J. Yang,et al.  Low-voltage, CMOS-free synaptic memory based on LiXTiO2 redox transistors. , 2019, ACS applied materials & interfaces.

[19]  K. Terabe,et al.  In Situ Hard X-ray Photoelectron Spectroscopy of Space Charge Layer in a ZnO-Based All-Solid-State Electric Double-Layer Transistor , 2019, The Journal of Physical Chemistry C.

[20]  K. Terabe,et al.  Conductivity Modulation by CaVO3-based All-solid-state Redox Transistor with Ion Transport of Li+ or H+ , 2019, Transactions of the Materials Research Society of Japan.

[21]  A. Seabaugh,et al.  Pulse Dynamics of Electric Double Layer Formation on All-Solid-State Graphene Field-Effect Transistors. , 2018, ACS applied materials & interfaces.

[22]  Toshiyuki Yamane,et al.  Recent Advances in Physical Reservoir Computing: A Review , 2018, Neural Networks.

[23]  Yingli Chu,et al.  Light-Stimulated Synaptic Devices Utilizing Interfacial Effect of Organic Field-Effect Transistors. , 2018, ACS applied materials & interfaces.

[24]  Yongli He,et al.  Electric-double-layer transistors for synaptic devices and neuromorphic systems , 2018 .

[25]  Yuchao Yang,et al.  Ion Gated Synaptic Transistors Based on 2D van der Waals Crystals with Tunable Diffusive Dynamics , 2018, Advanced materials.

[26]  T. Ohno,et al.  Positive and Negative Aspects of Interfaces in Solid-State Batteries , 2018 .

[27]  K. Terabe,et al.  Magnetic Control of Magneto-Electrochemical Cell and Electric Double Layer Transistor , 2017, Scientific Reports.

[28]  K. Yoshimura,et al.  Reservoir Computing Beyond Memory-Nonlinearity Trade-off , 2017, Scientific Reports.

[29]  T. Norby,et al.  Mechanisms of Protonic Surface Transport in Porous Oxides: Example of YSZ , 2017 .

[30]  N. Cioffi,et al.  The double layer capacitance of ionic liquids for electrolyte gating of ZnO thin film transistors and effect of gate electrodes , 2017 .

[31]  Shimeng Yu,et al.  Emerging Memory Technologies: Recent Trends and Prospects , 2016, IEEE Solid-State Circuits Magazine.

[32]  A. Hayashi,et al.  5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte , 2016 .

[33]  Y. Shibuta,et al.  Proton Migration on Hydrated Surface of Cubic ZrO2: Ab initio Molecular Dynamics Simulation , 2015 .

[34]  M. Aono,et al.  Modulation of superconducting critical temperature in niobium film by using all-solid-state electric-double-layer transistor , 2015 .

[35]  M. Aono,et al.  Effect of Ionic Conductivity on Response Speed of SrTiO3-Based All-Solid-State Electric-Double-Layer Transistor. , 2015, ACS applied materials & interfaces.

[36]  N. Kuwata,et al.  Low-Temperature Protonic Conduction Based on Surface Protonics: An Example of Nanostructured Yttria-Doped Zirconia , 2014 .

[37]  Liyuan Han,et al.  Space–Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery , 2014 .

[38]  J. Maier,et al.  Proton Conduction in Dense and Porous Nanocrystalline Ceria Thin Films , 2013 .

[39]  Masakazu Aono,et al.  All-solid-state electric-double-layer transistor based on oxide ion migration in Gd-doped CeO2 on SrTiO3 single crystal , 2013 .

[40]  H. Kawarada,et al.  Low-Temperature Transport Properties of Holes Introduced by Ionic Liquid Gating in Hydrogen-Terminated Diamond Surfaces , 2013 .

[41]  J. Martynczuk,et al.  On Proton Conductivity in Porous and Dense Yttria Stabilized Zirconia at Low Temperature , 2013 .

[42]  Se Hyun Kim,et al.  Electrolyte‐Gated Transistors for Organic and Printed Electronics , 2013, Advanced materials.

[43]  M. Osada,et al.  Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte , 2012 .

[44]  G. C. Mather,et al.  Surface proton conductivity of dense nanocrystalline YSZ , 2012 .

[45]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[46]  N. Kuwata,et al.  Water uptake and conduction property of nano-grained yttria-doped zirconia fabricated by ultra-high pressure compaction at room temperature , 2012 .

[47]  Hongtao Yuan,et al.  Discovery of superconductivity in KTaO₃ by electrostatic carrier doping. , 2011, Nature nanotechnology.

[48]  L. Gu,et al.  Electrically Induced Ferromagnetism at Room Temperature in Cobalt-Doped Titanium Dioxide , 2011, Science.

[49]  Manfred Martin,et al.  Room-temperature protonic conduction in nanocrystalline films of yttria-stabilized zirconia , 2010 .

[50]  A. Wokaun,et al.  Laser ablation characteristics of yttria-doped zirconia in the nanosecond and femtosecond regimes , 2010 .

[51]  Hongtao Yuan,et al.  High‐Density Carrier Accumulation in ZnO Field‐Effect Transistors Gated by Electric Double Layers of Ionic Liquids , 2009 .

[52]  Masashi Kawasaki,et al.  Electric-field-induced superconductivity in an insulator. , 2008, Nature materials.

[53]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[54]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[55]  Fritz B. Prinz,et al.  Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells , 2007 .

[56]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[57]  P. Ekdunge,et al.  Proton Conductivity of Nafion 117 as Measured by a Four‐Electrode AC Impedance Method , 1996 .

[58]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .