Scaling relations for galaxy clusters in the Millennium-XXL simulation

We present a very large high-resolution cosmological N-body simulation, the Millennium-XXL or MXXL, which uses 303 billion particles to represent the formation of dark matter structures throughout a 4.1 Gpc box in a Λ cold dark matter cosmology. We create sky maps and identify large samples of galaxy clusters using surrogates for four different observables: richness estimated from galaxy surveys, X-ray luminosity, integrated Sunyaev–Zeldovich (SZ) signal and lensing mass. The unprecedented combination of volume and resolution allows us to explore in detail how these observables scale with each other and with cluster mass. The scatter correlates between different mass–observable relations because of common sensitivities to the internal structure, orientation and environment of clusters, as well as to line-of-sight superposition of uncorrelated structure. We show that this can account for the apparent discrepancies uncovered recently between the mean thermal SZ signals measured for optically and X-ray selected clusters by stacking data from the Planck satellite. Related systematics can also affect inferences from extreme clusters detected at high redshift. Our results illustrate that cosmological conclusions from galaxy cluster surveys depend critically on proper modelling, not only of the relevant physics, but also of the full distribution of the observables and of the selection biases induced by cluster identification procedures.

[1]  Leiden University,et al.  The effects of halo alignment and shape on the clustering of galaxies , 2012, 1203.5335.

[2]  L. Verde,et al.  A critical analysis of high-redshift, massive, galaxy clusters. Part I , 2011, 1108.5458.

[3]  R. H. Wechsler,et al.  ROBUST OPTICAL RICHNESS ESTIMATION WITH REDUCED SCATTER , 2011, 1104.2089.

[4]  D. Holz,et al.  THE MOST MASSIVE OBJECTS IN THE UNIVERSE , 2010, 1004.5349.

[5]  A. Liddle,et al.  Sunyaev-Zeldovich clusters in Millenium gas simualtions , 2011, 1112.3769.

[6]  Changbom Park,et al.  THE NEW HORIZON RUN COSMOLOGICAL N-BODY SIMULATIONS , 2011, 1112.1754.

[7]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: ACT-CL J0102−4915 “EL GORDO,” A MASSIVE MERGING CLUSTER AT REDSHIFT 0.87 , 2011, 1109.0953.

[8]  S. Hotchkiss Quantifying the rareness of extreme galaxy clusters , 2011, 1105.3630.

[9]  Joel R. Primack,et al.  Halo concentrations in the standard LCDM cosmology , 2011, 1104.5130.

[10]  E. Rykoff,et al.  EXTRINSIC SOURCES OF SCATTER IN THE RICHNESS–MASS RELATION OF GALAXY CLUSTERS , 2011, 1104.2090.

[11]  Oliver Hahn,et al.  Multi-scale initial conditions for cosmological simulations , 2011, 1103.6031.

[12]  G. W. Pratt,et al.  Planck early results Special feature Planck early results . VIII . The all-sky early Sunyaev-Zeldovich cluster sample , 2011 .

[13]  Adrian T. Lee,et al.  DISCOVERY AND COSMOLOGICAL IMPLICATIONS OF SPT-CL J2106-5844, THE MOST MASSIVE KNOWN CLUSTER AT z>1 , 2011, 1101.1286.

[14]  M. Meneghetti,et al.  SCALING RELATION IN TWO SITUATIONS OF EXTREME MERGERS , 2010, 1012.4027.

[15]  L. Verde,et al.  Implications of multiple high-redshift galaxy clusters , 2010, 1009.3884.

[16]  G. W. Pratt,et al.  The MCXC: a meta-catalogue of x-ray detected clusters of galaxies , 2010, 1007.1916.

[17]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[18]  P. A. R. Ade,et al.  SPT-CL J0546-5345: A MASSIVE z>1 GALAXY CLUSTER SELECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT WITH THE SOUTH POLE TELESCOPE , 2010, 1006.5639.

[19]  Simon D. M. White,et al.  One simulation to fit them all - changing the background parameters of a cosmological N-body simulation , 2009, 0912.4277.

[20]  A. Evrard,et al.  MASSIVE HALOS IN MILLENNIUM GAS SIMULATIONS: MULTIVARIATE SCALING RELATIONS , 2009, 0910.1599.

[21]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[22]  S. Hilbert,et al.  Abundances, masses and weak-lensing mass profiles of galaxy clusters as a function of richness and luminosity in ΛCDM cosmologies , 2009, 0907.4371.

[23]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[24]  John Dubinski,et al.  THE HORIZON RUN N-BODY SIMULATION: BARYON ACOUSTIC OSCILLATIONS AND TOPOLOGY OF LARGE-SCALE STRUCTURE OF THE UNIVERSE , 2008, 0812.1392.

[25]  J. Frieman,et al.  CONSTRAINING THE SCATTER IN THE MASS–RICHNESS RELATION OF maxBCG CLUSTERS WITH WEAK LENSING AND X-RAY DATA , 2008, 0809.2794.

[26]  Simon Prunet,et al.  Full-sky weak-lensing simulation with 70 billion particles , 2008, 0807.3651.

[27]  J. Frieman,et al.  CROSS-CORRELATION WEAK LENSING OF SDSS GALAXY CLUSTERS. I. MEASUREMENTS , 2007, 0709.1153.

[28]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[29]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[30]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[31]  E. Rykoff,et al.  The LX—M relation of clusters of galaxies , 2008, 0802.1069.

[32]  Zheng Zheng,et al.  Environmental Effects on Real-Space and Redshift-Space Galaxy Clustering , 2007, 0712.3570.

[33]  L. Guzzo,et al.  The representative XMM-Newton cluster structure survey (REXCESS) of an X-ray luminosity selected galaxy cluster sample , 2007, astro-ph/0703553.

[34]  Durham,et al.  The detectability of baryonic acoustic oscillations in future galaxy surveys. , 2007, astro-ph/0702543.

[35]  E. Rozo,et al.  MaxBCG: A Red-Sequence Galaxy Cluster Finder , 2007, astro-ph/0701268.

[36]  R. Nichol,et al.  A MaxBCG Catalog of 13,823 Galaxy Clusters from the Sloan Digital Sky Survey , 2007, astro-ph/0701265.

[37]  S. White,et al.  Halo assembly bias and its effects on galaxy clustering , 2006, astro-ph/0605636.

[38]  M. Crocce,et al.  Transients from initial conditions in cosmological simulations , 2006, astro-ph/0606505.

[39]  J. Brinkmann,et al.  Density profiles of galaxy groups and clusters from SDSS galaxy–galaxy weak lensing , 2006, astro-ph/0605476.

[40]  J. G. Bartlett,et al.  Catalog extraction in SZ cluster surveys : a matched filter approach , 2006, astro-ph/0602424.

[41]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[42]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[43]  S. White,et al.  The age dependence of halo clustering , 2005, astro-ph/0506510.

[44]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[45]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[46]  A. Schwope,et al.  Discovery of an X-Ray-luminous Galaxy Cluster at z = 1.4 , 2005, astro-ph/0503004.

[47]  H. M. P. Couchman,et al.  Galaxy Clusters in Hubble Volume Simulations: Cosmological Constraints from Sky Survey Populations , 2001, astro-ph/0110246.

[48]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[49]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[50]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[51]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[52]  Denmark,et al.  The nature of galaxy bias and clustering , 1999, astro-ph/9903343.

[53]  R. Scoccimarro Transients from initial conditions: a perturbative analysis , 1997, astro-ph/9711187.

[54]  H. M. P. Couchman,et al.  Evolution of Structure in Cold Dark Matter Universes , 1997, astro-ph/9709010.

[55]  G. Kauffmann,et al.  Galaxy formation and large scale bias , 1995, astro-ph/9512009.

[56]  J. Salmon Generation of Correlated and Constrained Gaussian Stochastic Processes for N-Body Simulations , 1996 .

[57]  P. Schneider,et al.  Detection of (dark) matter concentrations via weak gravitational lensing , 1996, astro-ph/9601039.

[58]  J. Silk,et al.  Cosmology and large scale structure , 1996 .

[59]  C. Baugh,et al.  A comparison of the evolution of density fields in perturbation theory and numerical simulations - II. Counts-in-cells analysis , 1994, astro-ph/9408057.

[60]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[61]  Ya. B. Zel'Dovich,et al.  Microwave background radiation as a probe of the contemporary structure and history of the universe , 1980 .