Towards Robust Network Slice Design under Correlated Demand Uncertainties

Network Slicing is envisaged as a key component to address the challenges arising in next generation networks concerning the deployment, control and management of services. Besides, it promotes concurrent operation of multiple logical networks with diverging requirements on a common substrate platform. In this regard, the problem of designing individual logical network slices and mapping them onto the underlying substrate network gains significance. We denote this problem as the Network Slice Design Problem. In this work, we first consider the general network slice design problem. Adopting the robust optimisation approach of Bertsimas and Sim \cite{bertsimas:03}, \cite{bertsimas:04}, we then develop two additional formulations: \begin{inparaenum}[i)] \item to handle traffic demand uncertainties, and \item to account for the correlations among the uncertain traffic demands\end{inparaenum}. Finally, we present an extensive evaluation of the proposed formulations using realistic network instances.

[1]  Martha Martins Carvalho,et al.  Demand response models with correlated price data: A robust optimization approach , 2012 .

[2]  Stefano Coniglio,et al.  Data Uncertainty in Virtual Network Embedding: Robust Optimization and Protection Levels , 2016, Journal of Network and Systems Management.

[3]  Xavier Hesselbach,et al.  Virtual Network Embedding: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[4]  Hamid Shahriari,et al.  Robust optimization under correlated polyhedral uncertainty set , 2016, Comput. Ind. Eng..

[5]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[6]  Ibrahim Matta,et al.  Slice embedding solutions for distributed service architectures , 2013, CSUR.

[7]  Arie M. C. A. Koster,et al.  Network planning under demand uncertainty with robust optimization , 2014, IEEE Communications Magazine.

[8]  Arie M. C. A. Koster,et al.  Optimisation Models for Robust and Survivable Network Slice Design: A Comparative Analysis , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[9]  Fabio D'Andreagiovanni,et al.  A fast hybrid primal heuristic for multiband robust capacitated network design with multiple time periods , 2014, Appl. Soft Comput..

[10]  Ken Darby-Dowman,et al.  Robust optimization and portfolio selection: The cost of robustness , 2011, Eur. J. Oper. Res..

[11]  Jaime Llorca,et al.  The cloud service distribution problem in distributed cloud networks , 2015, 2015 IEEE International Conference on Communications (ICC).

[12]  Arie M. C. A. Koster,et al.  Robust network design: Formulations, valid inequalities, and computations , 2013, Networks.

[13]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[14]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[15]  Alexandre Street,et al.  Energy and reserve scheduling under correlated nodal demand uncertainty: An adjustable robust optimization approach , 2014, 2014 Power Systems Computation Conference.

[16]  Michal Pioro,et al.  SNDlib 1.0—Survivable Network Design Library , 2010 .

[17]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[18]  Iain Dunning,et al.  Reformulation versus cutting-planes for robust optimization , 2015, Comput. Manag. Sci..

[19]  Matias Richart,et al.  Resource Slicing in Virtual Wireless Networks: A Survey , 2016, IEEE Transactions on Network and Service Management.

[20]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..