Polymeres graphitisches Kohlenstoffnitrid als heterogener Organokatalysator: von der Photochemie über die Vielzweckkatalyse hin zur nachhaltigen Chemie

Polymere graphitische Kohlenstoffnitrid-Materialien (vereinfacht g-C3N4), die nur aus C, N und Spuren von H bestehen, sind in den letzten Jahren wieder verstarkt in das Zentrum des Interesses geruckt, wohl auch wegen der Ahnlichkeit zu Graphit. g-C3N4 ist anders als Graphit ein Halbleiter mit mittlerer Bandlucke und damit ein effektiver (Photo)-Katalysator fur eine ganze Reihe von Reaktionen. In diesem Aufsatz beschreiben wir die “Polymerchemie” des synthetischen Aufbaus, wie die Bandlagen und die Bandlucke durch Copolymerisation und Dotierung verandert werden konnen und wie Anderungen der Festkorpertextur die Effektivitat dieses heterogenen Organokatalysators verbessern konnen. g-C3N4 und seine Modifikationen zeigen eine sehr hohe thermische und chemische Stabilitat und katalysieren eine ganze Reihe von “Traumreaktionen”, wie die photochemische Spaltung von Wasser, milde und selektive Oxidationsreaktionen, oder – als coaktiver Katalysatortrager – superschnelle Hydrierungen. Da Kohlenstoffnitrid metallfrei ist, toleriert es funktionelle Gruppen und ist daher fur Vielzweckanwendungen in der Umwandlung von Biomasse und in der nachhaltigen Chemie geeignet.

[1]  M. Davis,et al.  Design and preparation of organic-inorganic hybrid catalysts. , 2002, Chemical reviews.

[2]  S. K. Pabi,et al.  Influence of RF power on the electrical and mechanical properties of nano-structured carbon nitride thin films deposited by RF magnetron sputtering , 2010 .

[3]  Paul T Anastas,et al.  Origins, current status, and future challenges of green chemistry. , 2002, Accounts of chemical research.

[4]  S. Louie,et al.  Theoretical investigation of graphitic carbon nitride and possible tubule forms , 1997 .

[5]  S. Yoo,et al.  Noncatalytic synthesis of carbon‐nitride nanocolumns by dc magnetron sputtering , 2010 .

[6]  C. Cao,et al.  Formation and characterization of flower-like carbon nitride by pyrolysis of melamine , 2010 .

[7]  T. Komatsu,et al.  Polycondensation/pyrolysis of tris-s-triazine derivatives leading to graphite-like carbon nitrides , 2001 .

[8]  E. Kroke,et al.  Novel group 14 nitrides , 2004 .

[9]  Du,et al.  Carbon nitride films synthesized by combined ion-beam and laser-ablation processing. , 1995, Physical review. B, Condensed matter.

[10]  W. Schnick,et al.  Preparation and Structure of Melemium Melem Perchlorate HC6N7(NH2)3ClO4·C6N7(NH2)3 , 2008 .

[11]  A. Vinu,et al.  Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: a metal-free basic catalyst. , 2009, Angewandte Chemie.

[12]  M. Antonietti,et al.  Making MetalCarbon Nitride Heterojunctions for Improved Photocatalytic Hydrogen Evolution with Visible Light , 2010 .

[13]  M. Antonietti,et al.  Photocurrent generation by polymeric carbon nitride solids: an initial step towards a novel photovoltaic system. , 2010, Chemistry, an Asian journal.

[14]  D. Macfarlane,et al.  Ionic liquids- : Progress on the fundamental issues , 2007 .

[15]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[16]  S. Dai,et al.  Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. , 2009, Journal of the American Chemical Society.

[17]  B. Wilkens,et al.  Novel synthetic routes to carbon-nitrogen thin films , 1994 .

[18]  I. Hermans,et al.  To the core of autocatalysis in cyclohexane autoxidation. , 2006, Chemistry.

[19]  T. Komatsu Prototype carbon nitrides similar to the symmetrictriangular form of melon , 2001 .

[20]  D. Ferri,et al.  Advances in Infrared Spectroscopy of Catalytic Solid–Liquid Interfaces: The Case of Selective Alcohol Oxidation , 2009 .

[21]  M. Antonietti,et al.  Boron- and fluorine-containing mesoporous carbon nitride polymers: metal-free catalysts for cyclohexane oxidation. , 2010, Angewandte Chemie.

[22]  A. Corma,et al.  Hybrid organic–inorganic catalytic porous materials synthesized at neutral pH in absence of structural directing agents , 2009 .

[23]  Jie-Sheng Chen,et al.  Direct conversion of urea into graphitic carbon nitride over mesoporous TiO2 spheres under mild condition. , 2011, Chemical communications.

[24]  N. Fukata Impurity Doping in Silicon Nanowires , 2009 .

[25]  G. Hutchings,et al.  Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions , 2005, Nature.

[26]  Huaiyong Zhu,et al.  Pivotal role of fluorine in tuning band structure and visible-light photocatalytic activity of nitrogen-doped TiO2. , 2009, Chemistry.

[27]  Chuncheng Chen,et al.  Photocatalytic aerobic oxidation of alcohols on TiO2: the acceleration effect of a Brønsted acid. , 2010, Angewandte Chemie.

[28]  Markus Antonietti,et al.  Biomimetic Principles in Polymer and Material Science , 2010 .

[29]  E. Xie,et al.  On the validity of the formation of crystalline carbon nitrides, C3N4 , 1999 .

[30]  Kazuhiro Takanabe,et al.  Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. , 2010, Angewandte Chemie.

[31]  G. Rignanese,et al.  First-principles study of vibrational and dielectric properties of C3N4 polymorphs , 2002 .

[32]  S. Dai,et al.  Mesoporöse Kohlenstoffmaterialien: Synthese und Modifizierung , 2008 .

[33]  Li Zhao,et al.  Sustainable nitrogen-doped carbonaceous materials from biomass derivatives , 2010 .

[34]  R. Bal,et al.  Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst. , 2006, Angewandte Chemie.

[35]  Venu Arunajatesan,et al.  Influence of Acid Modification on Selective Phenol Hydrogenation Over Pd/Activated Carbon Catalysts , 2010 .

[36]  A. Corma,et al.  Lewis acids as catalysts in oxidation reactions: from homogeneous to heterogeneous systems. , 2002, Chemical reviews.

[37]  M. C. D. Santos,et al.  Nitrogen-substituted nanotubes and nanojunctions: Conformation and electronic properties , 2006 .

[38]  M. Antonietti,et al.  Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments. , 2009, Journal of the American Chemical Society.

[39]  M. Antonietti,et al.  Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light , 2009 .

[40]  C. Li,et al.  Graphitic carbon nitride thin films deposited by electrodeposition , 2004, Materials Letters.

[41]  G. Zou,et al.  Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine , 2009 .

[42]  Yi Lin,et al.  Functionalized carbon nanotubes: properties and applications. , 2002, Accounts of chemical research.

[43]  O. Ikkala,et al.  Functional Porous Structures Based on the Pyrolysis of Cured Templates of Block Copolymer and Phenolic Resin , 2006 .

[44]  Changfeng Chen,et al.  Structural deformation, strength, and instability of cubic BN compared to diamond : A first-principles study , 2006 .

[45]  Masatake Haruta,et al.  Gold catalysts: towards sustainable chemistry. , 2007, Angewandte Chemie.

[46]  M. Bauer,et al.  High-Pressure Bulk Synthesis of Crystalline C6N9H3·HCl: A Novel C3N4 Graphitic Derivative , 2001 .

[47]  Tamao Ishida,et al.  Goldkatalyse für eine nachhaltige Chemie , 2007 .

[48]  Identification of electron donor states in N-doped carbon nanotubes , 2000, cond-mat/0011318.

[49]  R. Sheldon,et al.  Mechanism of Laccase–TEMPO‐Catalyzed Oxidation of Benzyl Alcohol , 2010 .

[50]  M. Antonietti,et al.  Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. , 2006, Angewandte Chemie.

[51]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[52]  J. Delafond,et al.  Formation of the crystalline β-C3N4 phase by dual ion beam sputtering deposition , 1995 .

[53]  M. Antonietti,et al.  Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. , 2009, Journal of the American Chemical Society.

[54]  L. Martins,et al.  Cu(II) complexes bearing the 2,2,2-tris(1-pyrazolyl)ethanol or 2,2,2-tris(1-pyrazolyl)ethyl methanesulfonate scorpionates. X-Ray structural characterization and application in the mild catalytic peroxidative oxidation of cyclohexane. , 2009, Dalton transactions.

[55]  K. Ariga,et al.  Preparation and Characterization of Well‐Ordered Hexagonal Mesoporous Carbon Nitride , 2005 .

[56]  M. Antonietti,et al.  Porous materials via nanocasting procedures: innovative materials and learning about soft-matter organization. , 2002, Chemical communications.

[57]  Katsuhiko Ariga,et al.  Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. , 2010, Angewandte Chemie.

[58]  Jianjun Wang,et al.  Rapid, facile synthesis of nitrogen-rich carbon nitride powders , 2002 .

[59]  Yuhan Sun,et al.  One‐Step Solvothermal Synthesis of a Carbon@TiO2 Dyade Structure Effectively Promoting Visible‐Light Photocatalysis , 2010, Advanced materials.

[60]  Shaestagir Chowdhury,et al.  CMOS Humidity Sensor System Using Carbon Nitride Film as Sensing Materials , 2008, Sensors.

[61]  U. Schuchardt,et al.  Cyclohexane oxidation continues to be a challenge , 2001 .

[62]  C. Liang,et al.  Mesoporous carbon materials: synthesis and modification. , 2008, Angewandte Chemie.

[63]  D. Zhao,et al.  Anionic surfactant induced mesophase transformation to synthesize highly ordered large-pore mesoporous silica structures , 2006 .

[64]  Ferdi Schüth,et al.  Design of solid catalysts for the conversion of biomass , 2009 .

[65]  W. Schnick,et al.  From Triazines to Heptazines , 2006 .

[66]  A. Harker,et al.  Dissociation of Cyanogen Azide: An Alternative Route to Synthesis of Carbon Nitride , 1998 .

[67]  M. Antonietti,et al.  Photocatalytic Activities of Graphitic Carbon Nitride Powder for Water Reduction and Oxidation under Visible Light , 2009 .

[68]  M. Antonietti,et al.  A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials , 2010 .

[69]  Wu,et al.  Observation of crystalline C3N4. , 1994, Physical review. B, Condensed matter.

[70]  D. Cole,et al.  Carbon–Nitrogen Pyrolyzates: Attempted Preparation of Carbon Nitride , 1991 .

[71]  J. Sehnert,et al.  Ab initio calculation of solid-state NMR spectra for different triazine and heptazine based structure proposals of g-C3N4. , 2007, The journal of physical chemistry. B.

[72]  S. Mao,et al.  Two-phase nanostructured carbon nitride films prepared by direct current magnetron sputtering and thermal annealing , 2010 .

[73]  Avelino Corma,et al.  Supported gold nanoparticles as catalysts for organic reactions. , 2008, Chemical Society reviews.

[74]  F. Weill,et al.  On a new model of the graphitic form of C3N4 , 1999 .

[75]  Bernd G. Pfrommer,et al.  NMR Chemical Shifts in Hard Carbon Nitride Compounds , 1998 .

[76]  M. Antonietti,et al.  Mesoporous graphitic carbon nitride as a versatile, metal-free catalyst for the cyclisation of functional nitriles and alkynes , 2007 .

[77]  P. Ritterskamp,et al.  Ein auf Titandisilicid basierender, halbleitender Katalysator zur Wasserspaltung mit Sonnenlicht – reversible Speicherung von Sauerstoff und Wasserstoff , 2007 .

[78]  Markus Antonietti,et al.  mpg-C(3)N(4)-Catalyzed selective oxidation of alcohols using O(2) and visible light. , 2010, Journal of the American Chemical Society.

[79]  R. Schlögl,et al.  Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts , 2008 .

[80]  A. Vinu Two‐Dimensional Hexagonally‐Ordered Mesoporous Carbon Nitrides with Tunable Pore Diameter, Surface Area and Nitrogen Content , 2008 .

[81]  E. G. Gillan Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor , 2000 .

[82]  L. Song,et al.  Large‐Scale Synthesis of Nitrogen‐Rich Carbon Nitride Microfibers by Using Graphitic Carbon Nitride as Precursor , 2008 .

[83]  J. Pérez‐Prieto,et al.  Catalytic processes activated by light , 2010 .

[84]  M. Antonietti,et al.  Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. , 2010, Physical chemistry chemical physics : PCCP.

[85]  L. E. Sansores,et al.  ELECTRONIC STRUCTURE OF SIX PHASES OF C3N4: A THEORETICAL APPROACH , 1999 .

[86]  L. Gmelin Ueber einige Verbindungen des Melon's , 1835 .

[87]  A. Semencha,et al.  Theoretical prerequisites, problems, and practical approaches to the preparation of carbon nitride: A Review , 2010 .

[88]  Chuncheng Chen,et al.  Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO. , 2008, Angewandte Chemie.

[89]  M. Antonietti Surfactants for novel templating applications. , 2001 .

[90]  Boyd,et al.  Carbon nitride deposited using energetic species: A two-phase system. , 1994, Physical review letters.

[91]  M. Antonietti,et al.  Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. , 2011, Journal of the American Chemical Society.

[92]  Cohen,et al.  Calculated quasiparticle band gap of beta -C3N4. , 1993, Physical review. B, Condensed matter.

[93]  Kunlun Hong,et al.  Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. , 2004, Angewandte Chemie.

[94]  M. Antonietti,et al.  Ionic Liquids as Precursors for Nitrogen‐Doped Graphitic Carbon , 2010, Advanced materials.

[95]  M. Antonietti,et al.  Nanoparticles and nanosheets of aromatic polyimides via polycondensation in controlled pore geometries , 2004 .

[96]  Arne Thomas,et al.  Chemische Synthese von mesoporösen Kohlenstoffnitriden in harten Templaten und ihre Anwendung als metallfreie Katalysatoren in Friedel‐Crafts‐Reaktionen , 2006 .

[97]  C. A. Tolman,et al.  A highly selective zeolite catalyst for hydrocarbon oxidation. A completely inorganic mimic of the alkane .omega.-hydroxylases , 1987 .

[98]  X. Bai,et al.  Hydrogen storage in carbon nitride nanobells , 2001 .

[99]  Z. Zou,et al.  Organic-inorganic composite photocatalyst of g-C(3)N(4) and TaON with improved visible light photocatalytic activities. , 2010, Dalton transactions.

[100]  Weiguo Song,et al.  Preparation and Characterization of Carbon Nitride Nanotubes and Their Applications as Catalyst Supporter , 2009 .

[101]  C. Rao,et al.  Boron- and nitrogen-doped carbon nanotubes and graphene , 2010 .

[102]  Dan Feng,et al.  A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic−Organic Self-Assembly , 2006 .

[103]  D. Zhao,et al.  Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture , 2010 .

[104]  Liu,et al.  Stability of carbon nitride solids. , 1994, Physical review. B, Condensed matter.

[105]  W. Schnick,et al.  Tackling the stacking disorder of melon--structure elucidation in a semicrystalline material. , 2010, Physical chemistry chemical physics : PCCP.

[106]  Z. Zou,et al.  Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[107]  Z. Zou,et al.  Photodegradation performance of g-C3N4 fabricated by directly heating melamine. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[108]  M. Antonietti,et al.  Mesoporous, 2D Hexagonal Carbon Nitride and Titanium Nitride/Carbon Composites , 2009 .

[109]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[110]  W. Schnick,et al.  Melamine-melem adduct phases: investigating the thermal condensation of melamine. , 2009, Chemistry.

[111]  Seung Jae Yang,et al.  Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature , 2009 .

[112]  W. Schnick,et al.  Structure elucidation of polyheptazine imide by electron diffraction--a templated 2D carbon nitride network. , 2009, Chemical communications.

[113]  T. Komatsu Attempted chemical synthesis of graphite-likecarbon nitride , 2001 .

[114]  A. Snis,et al.  Electronic density of states, 1 s core-level shifts, and core ionization energies of graphite, diamond, C 3 N 4 phases, and graphitic C 11 N 4 , 1999 .

[115]  A. Corma Materials chemistry: Catalysts made thinner , 2009, Nature.

[116]  M. Antonietti,et al.  Metal-free catalysis of sustainable Friedel-Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds. , 2006, Chemical communications.

[117]  Enrico Negro,et al.  Development of nano-electrocatalysts based on carbon nitride supports for the ORR processes in PEM fuel cells , 2010 .

[118]  P. Li,et al.  Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation , 2010 .

[119]  C. M. Drain,et al.  Enhanced catalytic activity and unexpected products from the oxidation of cyclohexene by organic nanoparticles of 5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)porphyrinatoiron(III) in water by using O2. , 2009, Chemistry.

[120]  G. Hutchings,et al.  Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts , 2006, Science.

[121]  M. Antonietti,et al.  Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. , 2010, ChemSusChem.

[122]  K. Nicolaou,et al.  New reactions of IBX: oxidation of nitrogen- and sulfur-containing substrates to afford useful synthetic intermediates. , 2003, Angewandte Chemie.

[123]  Svitlana Pylypenko,et al.  Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. , 2009, ACS applied materials & interfaces.

[124]  Frédéric Jaouen,et al.  Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells , 2009, Science.

[125]  W. Schnick,et al.  Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. , 2003, Journal of the American Chemical Society.

[126]  E. C. Franklin THE AMMONO CARBONIC ACIDS , 1922 .

[127]  P. Kroll,et al.  Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structuresPart II: Alkalicyamelurates M3[C6N7O3], M = Li, Na, K, Rb, Cs, manuscript in preparation. , 2002 .

[128]  M. Antonietti,et al.  Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. , 2011, Journal of the American Chemical Society.

[129]  D. Tasis,et al.  Current progress on the chemical modification of carbon nanotubes. , 2010, Chemical reviews.

[130]  L. Pauling,et al.  The Structure of Cyameluric Acid, Hydromelonic Acid and Related Substances. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[131]  Q. Luo,et al.  Artificial selenoenzymes: designed and redesigned. , 2011, Chemical Society reviews.

[132]  A. Liu,et al.  Prediction of New Low Compressibility Solids , 1989, Science.

[133]  W. Schnick,et al.  New light on an old story: formation of melam during thermal condensation of melamine. , 2007, Chemistry.

[134]  A. Chatterjee,et al.  Hydrogenation of Phenol in Supercritical Carbon Dioxide Catalyzed by Palladium Supported on Al-MCM-41: A Facile Route for One-Pot Cyclohexanone Formation , 2009 .

[135]  M. Demuth,et al.  A titanium disilicide derived semiconducting catalyst for water splitting under solar radiation-reversible storage of oxygen and hydrogen. , 2007, Angewandte Chemie.

[136]  W. Yu,et al.  Preparation of magnetic graphitic carbon nitride nanocomposites , 2010 .

[137]  D. D. De Vos,et al.  Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations. , 2002, Chemical reviews.

[138]  Markus Antonietti,et al.  Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. , 2008, Chemistry.

[139]  Ortega,et al.  Relative stability of hexagonal and planar structures of hypothetical C3N4 solids. , 1995, Physical Review B (Condensed Matter).

[140]  I. Hermans,et al.  Selective Oxidation Catalysis: Opportunities and Challenges , 2009 .

[141]  Tao Jiang,et al.  Selective Phenol Hydrogenation to Cyclohexanone Over a Dual Supported Pd–Lewis Acid Catalyst , 2009, Science.

[142]  Markus Antonietti,et al.  Hard Templates for Soft Materials: Creating Nanostructured Organic Materials† , 2008 .

[143]  H. Saitoh,et al.  Hydrogen-storage characteristics of hydrogenated amorphous carbon nitrides , 2008 .

[144]  R. Cui,et al.  Schottky solar cells with amorphous carbon nitride thin films prepared by ion beam sputtering technique , 2002 .

[145]  Ping Liu,et al.  Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis , 2011 .

[146]  M. Antonietti,et al.  Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. , 2009, Journal of the American Chemical Society.

[147]  M. Kawaguchi,et al.  Synthesis, structure, and characteristics of the new host material [(C3N3)2(NH)3]n , 1995 .

[148]  P. Hoppe,et al.  High-pressure synthesis of crystalline carbon nitride imide, C2N2(NH). , 2007, Angewandte Chemie.

[149]  Jadwiga Gajewy,et al.  Recent progress in Lewis base activation and control of stereoselectivity in the additions of trimethylsilyl nucleophiles. , 2008, Chemical reviews.

[150]  K. Nelson,et al.  Optical measurement of the elastic moduli and thermal diffusivity of a C–N film , 1995 .

[151]  J. Iqbal,et al.  Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. , 2005, Chemical Reviews.

[152]  M. Antonietti,et al.  Excellent Visible-Light Photocatalysis of Fluorinated Polymeric Carbon Nitride Solids , 2010 .

[153]  Richard M. Lambert,et al.  Lean NOx reduction with CO + H2 mixtures over Pt/Al2O3 and Pd/Al2O3 catalysts , 2002 .

[154]  Y. Nakayama,et al.  Photoluminescence of hydrogenated amorphous carbon nitride films after ultraviolet light irradiation and thermal annealing , 1999 .

[155]  P. McMillan,et al.  Electronic and Structural Properties of Two-Dimensional Carbon Nitride Graphenes , 2008 .

[156]  Eckhard Bill,et al.  Nanoengineering of a magnetically separable hydrogenation catalyst. , 2004, Angewandte Chemie.

[157]  Arne Thomas,et al.  Graphitic carbon nitride as a metal-free catalyst for NO decomposition. , 2010, Chemical communications.

[158]  D. Su,et al.  Metal-free heterogeneous catalysis for sustainable chemistry. , 2010, ChemSusChem.

[159]  Cohen,et al.  Calculation of bulk moduli of diamond and zinc-blende solids. , 1985, Physical review. B, Condensed matter.

[160]  M. Antonietti,et al.  Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C–H bond oxidation , 2011 .

[161]  M. Antonietti,et al.  Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon. , 2008, Chemical communications.

[162]  S. Dai,et al.  Ionic liquids as versatile precursors for functionalized porous carbon and carbon-oxide composite materials by confined carbonization. , 2010, Angewandte Chemie.

[163]  S. P. Lee,et al.  Synthesis and Characterization of Carbon Nitride Films for Micro Humidity Sensors , 2008, Sensors.

[164]  M. A. Gómez,et al.  Novel Melt-Processable Nanocomposites Based on Isotactic Polypropylene and Carbon Nitride: Morphology, Crystallization, and Dynamic Mechanical Properties , 2010 .

[165]  J. Margrave,et al.  Synthesis of Spherical Carbon Nitride Nanostructures , 2001 .

[166]  H. J. Lucas,et al.  Some Derivatives of Cyameluric Acid and Probable Structures of Melam, Melem and Melon , 1940 .

[167]  J. Badding,et al.  High-Pressure Synthesis of sp2-Bonded Carbon Nitrides , 1996 .

[168]  F. Du,et al.  Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction , 2009, Science.

[169]  Chuncheng Chen,et al.  Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. , 2010, Chemical Society reviews.

[170]  Xingyan Xu,et al.  Synthesis and characterization of crystalline carbon nitride nanowires , 2010 .

[171]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[172]  W. Tolman,et al.  Biologically inspired oxidation catalysis , 2008, Nature.

[173]  M. Antonietti,et al.  Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. , 2011, Angewandte Chemie.

[174]  Xiangang Xu,et al.  Solvothermal preparation of graphite-like C3N4 nanocrystals , 2003 .

[175]  Shaomin Liu,et al.  Controllable preparation of graphitic carbon nitride nanosheets via confined interlayer nanospace of layered clays , 2010 .

[176]  K. Ariga,et al.  Preparation and characterization of novel microporous carbon nitride with very high surface area via nanocasting technique , 2008 .

[177]  A. Wee,et al.  Chemical bonding of fullerene and fluorinated fullerene on bare and hydrogenated diamond. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[178]  M. L. Cohen,et al.  Predicting useful materials. , 1993, Science.

[179]  P. Suarez,et al.  Ionic liquid (molten salt) phase organometallic catalysis. , 2002, Chemical reviews.

[180]  A. Snis,et al.  Relative stabilities, bulk moduli and electronic structure properties of different ultra-hard materials investigated within the local spin density functional approximation , 1999 .

[181]  M. Antonietti,et al.  Synthesis of g‐C3N4 Nanoparticles in Mesoporous Silica Host Matrices , 2005 .

[182]  J. Liebig Ueber Mellon und Mellonverbindungen , 1844 .

[183]  K. Ariga,et al.  Highly crystalline and conductive nitrogen-doped mesoporous carbon with graphitic walls and its electrochemical performance. , 2011, Chemistry.

[184]  David Milstein,et al.  Consecutive Thermal H2 and Light-Induced O2 Evolution from Water Promoted by a Metal Complex , 2009, Science.

[185]  M. Hartelt,et al.  Wear of carbon nitride coatings under oscillating sliding conditions , 2010 .

[186]  Charles M. Lieber,et al.  Experimental Realization of the Covalent Solid Carbon Nitride , 1993, Science.

[187]  Jinhua Ye,et al.  Carbon Nitride Polymers Sensitized with N-Doped Tantalic Acid for Visible Light-Induced Photocatalytic Hydrogen Evolution , 2010 .

[188]  Jianjun Wang,et al.  Photoluminescent carbon nitride films grown by vapor transport of carbon nitride powders. , 2002, Chemical communications.

[189]  J. Figueiredo,et al.  Oxygen activation sites in gold and iron catalysts supported on carbon nitride and activated carbon , 2010 .

[190]  M. Antonietti,et al.  Metal‐Containing Carbon Nitride Compounds: A New Functional Organic–Metal Hybrid Material , 2009 .

[191]  R. Sheldon,et al.  Green, catalytic oxidations of alcohols. , 2002, Accounts of chemical research.

[192]  J. E. Lowther RELATIVE STABILITY OF SOME POSSIBLE PHASES OF GRAPHITIC CARBON NITRIDE , 1999 .

[193]  Mei Wang,et al.  Mono- and binuclear complexes of iron(II) and iron(III) with an N4O ligand: synthesis, structures and catalytic properties in alkane oxidation. , 2006, Dalton transactions.

[194]  R. Riedel,et al.  Potassium melonate, K3[C6N7(NCN)3]·5H2O, and its potential use for the synthesis of graphite-like C3N4 materials , 2005 .

[195]  Hui-Ming Cheng,et al.  Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. , 2010, Journal of the American Chemical Society.

[196]  H. Dai,et al.  N-Doping of Graphene Through Electrothermal Reactions with Ammonia , 2009, Science.

[197]  C. Deslouis,et al.  Atomic Force Microscopy Studies of Carbon Nitride (CNx) Films Deposited on a Conducting Polymer Substrate , 2010 .

[198]  E. Haque,et al.  Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol , 2010 .