A binary grey wolf optimizer for the multidimensional knapsack problem

Abstract Grey Wolf Optimizer (GWO) is a new meta-heuristic that mimics the leadership hierarchy and group hunting mechanism of grey wolves in nature. A binary version is developed to tackle the multidimensional knapsack problem which has an extensive engineering background. The proposed binary grey wolf optimizer integrates some important features including an initial elite population generator, a pseudo-utility-based quick repair operator, a new evolutionary mechanism with a differentiated position updating strategy. The proposed algorithm takes full advantage of the knowledge of the problem to be solved and highlights the distinctive feature of the optimizer in the family of evolutionary algorithm. Experimental results statistically show the effectiveness of the new optimizer and the superiority of the proposed algorithm in solving the multidimensional knapsack problem, especially the large-scale problem.

[1]  Abdesslem Layeb,et al.  A hybrid quantum inspired harmony search algorithm for 0-1 optimization problems , 2013, J. Comput. Appl. Math..

[2]  Satish Chandra,et al.  Multi-objective Grey Wolf Optimizer for improved cervix lesion classification , 2017, Appl. Soft Comput..

[3]  Zhi-Gang Ren,et al.  Fusing ant colony optimization with Lagrangian relaxation for the multiple-choice multidimensional knapsack problem , 2012, Inf. Sci..

[4]  David Pisinger,et al.  Heuristics for the container loading problem , 2002, Eur. J. Oper. Res..

[5]  Fan Wang,et al.  A compromised large-scale neighborhood search heuristic for capacitated air cargo loading planning , 2009, Eur. J. Oper. Res..

[6]  Seyed Mohammad Mirjalili,et al.  Evolutionary population dynamics and grey wolf optimizer , 2015, Neural Computing and Applications.

[7]  Bijaya K. Panigrahi,et al.  Binary Grey Wolf Optimizer for large scale unit commitment problem , 2018, Swarm Evol. Comput..

[8]  John N. Tsitsiklis,et al.  Efficiency loss in a network resource allocation game: the case of elastic supply , 2004, IEEE Transactions on Automatic Control.

[9]  Günther R. Raidl,et al.  The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..

[10]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[11]  Akash Saxena,et al.  Robust Generation Control Strategy Based on Grey Wolf Optimizer JES , 2015 .

[12]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[13]  Maw-Sheng Chern,et al.  Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem , 2014 .

[14]  Guoming Lai,et al.  A new hybrid combinatorial genetic algorithm for multidimensional knapsack problems , 2014, The Journal of Supercomputing.

[15]  Wei Pan,et al.  Grey wolf optimizer for unmanned combat aerial vehicle path planning , 2016, Adv. Eng. Softw..

[16]  Daniela Zaharie,et al.  Influence of crossover on the behavior of Differential Evolution Algorithms , 2009, Appl. Soft Comput..

[17]  Didier El Baz,et al.  Solution of multidimensional knapsack problems via cooperation of dynamic programming and branch and bound , 2010 .

[18]  Saïd Hanafi,et al.  A hybrid quantum particle swarm optimization for the Multidimensional Knapsack Problem , 2016, Eng. Appl. Artif. Intell..

[19]  G. M. Komaki,et al.  Grey Wolf Optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time , 2015, J. Comput. Sci..

[20]  Seyed Mohammad Mirjalili How effective is the Grey Wolf optimizer in training multi-layer perceptrons , 2014, Applied Intelligence.

[21]  Andrew Lewis,et al.  S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization , 2013, Swarm Evol. Comput..

[22]  R. Hill,et al.  Improving genetic algorithm convergence using problem structure and domain knowledge in multidimensional knapsack problems , 2005 .

[23]  Shengyao Wang,et al.  A novel binary fruit fly optimization algorithm for solving the multidimensional knapsack problem , 2013, Knowl. Based Syst..

[24]  Tuomas Sandholm,et al.  Algorithm for optimal winner determination in combinatorial auctions , 2002, Artif. Intell..

[25]  Michel Vasquez,et al.  Improved results on the 0-1 multidimensional knapsack problem , 2005, Eur. J. Oper. Res..

[26]  Kaiping Luo,et al.  Enhanced grey wolf optimizer with a model for dynamically estimating the location of the prey , 2019, Appl. Soft Comput..

[27]  T. Jayabarathi,et al.  Economic dispatch using hybrid grey wolf optimizer , 2016 .

[28]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[29]  Michel Vasquez,et al.  Reduced costs propagation in an efficient implicit enumeration for the 01 multidimensional knapsack problem , 2008, J. Comb. Optim..

[30]  Jin-Kao Hao,et al.  A “Logic-Constrained” Knapsack Formulation and a Tabu Algorithm for the Daily Photograph Scheduling of an Earth Observation Satellite , 2001, Comput. Optim. Appl..

[31]  Urvinder Singh,et al.  Modified Grey Wolf Optimizer for Global Engineering Optimization , 2016, Appl. Comput. Intell. Soft Comput..

[32]  Adil Baykasoglu,et al.  An improved firefly algorithm for solving dynamic multidimensional knapsack problems , 2014, Expert Syst. Appl..

[33]  Mats Engwall,et al.  The resource allocation syndrome: the prime challenge of multi-project management? , 2003 .

[34]  Min Kong,et al.  A new ant colony optimization algorithm for the multidimensional Knapsack problem , 2008, Comput. Oper. Res..

[35]  Jacques Teghem,et al.  The multiobjective multidimensional knapsack problem: a survey and a new approach , 2010, Int. Trans. Oper. Res..

[36]  Abolfazl Chaman-Motlagh,et al.  Superdefect Photonic Crystal Filter Optimization Using Grey Wolf Optimizer , 2015, IEEE Photonics Technology Letters.

[37]  Wei Cai,et al.  Grey Wolf Optimizer for parameter estimation in surface waves , 2015 .

[38]  Saurabh Chaudhury,et al.  Multilevel thresholding using grey wolf optimizer for image segmentation , 2017, Expert Syst. Appl..

[39]  Quan-Ke Pan,et al.  An effective hybrid harmony search-based algorithm for solving multidimensional knapsack problems , 2015, Appl. Soft Comput..

[40]  Mangey Ram,et al.  System Reliability Optimization Using Gray Wolf Optimizer Algorithm , 2017, Qual. Reliab. Eng. Int..

[41]  Oscar Castillo,et al.  A fuzzy hierarchical operator in the grey wolf optimizer algorithm , 2017, Appl. Soft Comput..

[42]  R. Morck,et al.  Value-Enhancing Capital Budgeting and Firm-specific Stock Return Variation , 2004 .

[43]  Aboul Ella Hassanien,et al.  Binary grey wolf optimization approaches for feature selection , 2016, Neurocomputing.

[44]  Abdelkader Benyettou,et al.  Gray Wolf Optimizer for hyperspectral band selection , 2016, Appl. Soft Comput..

[45]  Mohd Herwan Sulaiman,et al.  Using the gray wolf optimizer for solving optimal reactive power dispatch problem , 2015, Appl. Soft Comput..

[46]  Quan-Ke Pan,et al.  An improved fruit fly optimization algorithm for solving the multidimensional knapsack problem , 2017, Appl. Soft Comput..

[47]  Parham Pahlavani,et al.  An efficient modified grey wolf optimizer with Lévy flight for optimization tasks , 2017, Appl. Soft Comput..

[48]  Ke Li,et al.  An integer encoding grey wolf optimizer for virtual network function placement , 2019, Appl. Soft Comput..

[49]  Jianjun Jiao,et al.  An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization , 2018, Eng. Appl. Artif. Intell..

[50]  Ana Maria A. C. Rocha,et al.  Improved binary artificial fish swarm algorithm for the 0-1 multidimensional knapsack problems , 2014, Swarm Evol. Comput..

[51]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[52]  Rumen Andonov,et al.  A dynamic programming based reduction procedure for the multidimensional 0-1 knapsack problem , 2008, Eur. J. Oper. Res..

[53]  Sankaran Mahadevan,et al.  Solving 0-1 knapsack problems based on amoeboid organism algorithm , 2013, Appl. Math. Comput..

[54]  Kusum Deep,et al.  A novel Random Walk Grey Wolf Optimizer , 2019, Swarm Evol. Comput..

[55]  Claire Mathieu,et al.  A Near-Optimal Solution to a Two-Dimensional Cutting Stock Problem , 2000, Math. Oper. Res..