A criterion of simultaneously symmetrization and spectral finiteness for a finite set of real 2-by-2 matrices

For K≥ 1, let there be given an arbitrary finite set A consisting of real 2-by-2 matrices A0 = � a b c d � , A1 = � a 1 r1b r1c d1 � ,..., AK = � a K rKb rKc dK � , and byρ(M) it stands for the spectral radius of a square matrix M. In this paper, we first show that if bc > 0 then A may be simultaneously symmetrized. This then implies that if bc≥ 0, max{ρ(A0),ρ(A1),...,ρ(AK)} = sup n≥1 max∈ A n n p ρ(M);

[1]  John N. Tsitsiklis,et al.  When is a Pair of Matrices Mortal? , 1997, Inf. Process. Lett..

[2]  V. Kozyakin,et al.  Finiteness property of a bounded set of matrices with uniformly sub-peripheral spectrum , 2011, 1106.2298.

[3]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[4]  J. Kingman Subadditive Ergodic Theory , 1973 .

[5]  Nikita Sidorov,et al.  An explicit counterexample to the Lagarias-Wang finiteness conjecture , 2010, ArXiv.

[6]  M. Zennaro,et al.  Finiteness property of pairs of 2× 2 sign-matrices via real extremal polytope norms , 2010 .

[7]  Xiongping Dai,et al.  The finite-step realizability of the joint spectral radius of a pair of d×d matrices one of which being rank-one , 2011, ArXiv.

[8]  J. Mairesse,et al.  Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .

[9]  Vincent D. Blondel,et al.  On the finiteness property for rational matrices , 2007 .

[10]  V. Kozyakin Structure of extremal trajectories of discrete linear systems and the finiteness conjecture , 2007 .

[11]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[12]  Yu Huang,et al.  Stability Criteria via Common Non-strict Lyapunov Matrix for Discrete-time Linear Switched Systems , 2011, ArXiv.

[13]  Vincent D. Blondel,et al.  An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..

[14]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[15]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[16]  Yu Huang,et al.  Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities , 2011, Autom..

[17]  Xiongping Dai Weakly Birkhoff recurrent switching signals, almost sure and partial stability of linear switched dynamical systems , 2011 .

[18]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[19]  J. Theys Joint spectral radius : theory and approximations/ , 2005 .

[20]  Yu Huang,et al.  Extremal ergodic measures and the finiteness property of matrix semigroups , 2011, 1107.0123.

[21]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[22]  F. Wirth,et al.  Duality results for the joint spectral radius and transient behavior , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[23]  Fabian R. Wirth,et al.  Complex Polytope Extremality Results for Families of Matrices , 2005, SIAM J. Matrix Anal. Appl..

[24]  Mau-Hsiang Shih,et al.  Asymptotic Stability and Generalized Gelfand Spectral Radius Formula , 1997 .

[25]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .