A low Reynolds number turbulence closure for viscoelastic fluids

[1]  F. Pinho A GNF framework for turbulent flow models of drag reducing fluids and proposal for a k–ε type closure , 2003 .

[2]  M. Malin,et al.  Turbulent pipe flow of power-law fluids , 1997 .

[3]  John L. Lumley,et al.  Drag Reduction by Additives , 1969 .

[4]  Antony N. Beris,et al.  Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of the variation of rheological parameters , 1998 .

[5]  F. Durst,et al.  Calculations of turbulent boundary layer flows with drag reducing polymer additives , 1977 .

[6]  Jung Yul Yoo,et al.  Drag reduction by polymer additives in a turbulent channel flow , 2003, Journal of Fluid Mechanics.

[7]  V. K. Gupta,et al.  Turbulent channel flow of dilute polymeric solutions: Drag reduction scaling and an eddy viscosity model , 2006 .

[8]  M. Malin,et al.  Turbulent pipe flow of Herschel-Bulkley fluids , 1998 .

[9]  S. Balachandar,et al.  Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow , 2006, Journal of Fluid Mechanics.

[10]  Renzo Piva,et al.  DNS of wall turbulence: dilute polymers and self-sustaining mechanisms , 2002 .

[11]  R. Adrian,et al.  Dynamics of hairpin vortices and polymer-induced turbulent drag reduction. , 2008, Physical review letters.

[12]  P. G. de Gennes,et al.  A Cascade Theory of Drag Reduction , 1986 .

[13]  Kemal Hanjalic,et al.  Advanced turbulence closure models: a view of current status and future prospects , 1994 .

[14]  W. Jones,et al.  The prediction of laminarization with a two-equation model of turbulence , 1972 .

[15]  Low Reynolds number k–ε model for near‐wall flow , 2005 .

[16]  Michael D. Graham,et al.  Nonlinear travelling waves as a framework for understanding turbulent drag reduction , 2006, Journal of Fluid Mechanics.

[17]  Robert A. Handler,et al.  Direct numerical simulation of the turbulent channel flow of a polymer solution , 1997 .

[18]  P. S. Virk Drag reduction fundamentals , 1975 .

[19]  Bassam A. Younis,et al.  A rational model for the turbulent scalar fluxes , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Yasutaka Nagano,et al.  Improved Form of the k-ε Model for Wall Turbulent Shear Flows , 1987 .

[21]  Ryskin Turbulent drag reduction by polymers: A quantitative theory. , 1987, Physical review letters.

[22]  P. Moin,et al.  Reynolds-stress and dissipation-rate budgets in a turbulent channel flow , 1987, Journal of Fluid Mechanics.

[23]  J. L. Zakin,et al.  Turbulence structure in drag reducing polymer solutions , 1977 .

[24]  Brian J. Edwards,et al.  Thermodynamics of flowing systems : with internal microstructure , 1994 .

[25]  T. J. Hanratty,et al.  Added stresses because of the presence of FENE-P bead–spring chains in a random velocity field , 1997, Journal of Fluid Mechanics.

[26]  N. Berman Drag reduction of the highest molecular weight fractions of polyethylene oxide , 1977 .

[27]  P. R. Resende,et al.  Numerical predictions and measurements of Reynolds normal stresses in turbulent pipe flow of polymers , 2006 .

[28]  C. E. Maneschy,et al.  A TURBULENCE MODEL FOR COMPUTING THE FLOW OF POWER-LAW FLUIDS WITHIN CIRCULAR TUBES , 2000 .

[29]  T. B. Gatski,et al.  Towards a rational model for the triple velocity correlations of turbulence , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  P. R. Resende,et al.  Modelling the new stress for improved drag reduction predictions of viscoelastic pipe flow , 2004 .

[31]  A. Morse,et al.  Axisymmetric free shear flows with and without swirl , 1980 .

[32]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[33]  P. J. Dotson,et al.  Polymer solution rheology based on a finitely extensible bead—spring chain model , 1980 .

[34]  F. Pinho,et al.  One Equation Model for Turbulent Channel Flow with Second Order Viscoelastic Corrections , 2008 .

[35]  Chang Feng Li,et al.  Influence of rheological parameters on polymer induced turbulent drag reduction , 2006 .

[36]  van den Bhaa Ben Brule,et al.  Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms , 2003, Journal of Fluid Mechanics.

[37]  E. J. Hinch,et al.  Mechanical models of dilute polymer solutions in strong flows , 1977 .

[38]  Robert C. Armstrong,et al.  Dynamics of polymeric liquids: Kinetic theory , 1987 .

[39]  R. M. C. So,et al.  Near-wall modeling of the dissipation rate equation , 1991 .

[40]  Brian Launder,et al.  A Reynolds stress model of turbulence and its application to thin shear flows , 1972, Journal of Fluid Mechanics.

[41]  R. Handler,et al.  Budgets of Reynolds stress, kinetic energy and streamwise enstrophy in viscoelastic turbulent channel flow , 2001 .

[42]  J. Hoyt A Freeman Scholar Lecture: The Effect of Additives on Fluid Friction , 1972 .

[43]  M. Graham,et al.  Polymer drag reduction in exact coherent structures of plane shear flow , 2004 .

[44]  A. B. Metzner,et al.  Turbulence phenomena in drag reducing systems , 1969 .

[45]  Fernando T. Pinho,et al.  Turbulent pipe flow predictions with a low Reynolds number k–ε model for drag reducing fluids , 2003 .

[46]  J. Hoyt Drag-reduction effectiveness of polymer solutions in the turbulent-flow rheometer: A catalog , 1971 .

[47]  Robert A. Handler,et al.  Viscoelastic effects on higher order statistics and on coherent structures in turbulent channel flow , 2005 .

[48]  Parviz Moin,et al.  Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow , 2005 .

[49]  Hyung Jin Sung,et al.  A nonlinear low-Reynolds-number κ-ε model for turbulent separated and reattaching flows—I. Flow field computations , 1995 .

[50]  A. G. Fabula,et al.  THE EFFECT OF ADDITIVES ON FLUID FRICTION , 1964 .

[51]  H. Usui,et al.  Reduction of eddy diffusion for momentum and heat in viscoelastic fluid flow in a circular tube , 1977 .

[52]  Michael Poreh,et al.  A Turbulent Energy Dissipation Model for Flows With Drag Reduction , 1978 .

[53]  Charles G. Speziale,et al.  ANALYTICAL METHODS FOR THE DEVELOPMENT OF REYNOLDS-STRESS CLOSURES IN TURBULENCE , 1990 .