Dynamic Semiparametric Models for Expected Shortfall (and Value-At-Risk)

Expected Shortfall (ES) is the average return on a risky asset conditional on the return being below some quantile of its distribution, namely its Value-at-Risk (VaR). The Basel III Accord, which will be implemented in the years leading up to 2019, places new attention on ES, but unlike VaR, there is little existing work on modeling ES. We use recent results from statistical decision theory to overcome the problem of "elicitability" for ES by jointly modelling ES and VaR, and propose new dynamic models for these risk measures. We provide estimation and inference methods for the proposed models, and confirm via simulation studies that the methods have good finite-sample properties. We apply these models to daily returns on four international equity indices, and find the proposed new ES-VaR models outperform forecasts based on GARCH or rolling window models.

[1]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[2]  Johanna F. Ziegel,et al.  Elicitability and backtesting: Perspectives for banking regulation , 2016, 1608.05498.

[3]  Dobrislav Dobrev,et al.  Accurate Evaluation of Expected Shortfall for Linear Portfolios with Elliptically Distributed Risk Factors , 2016 .

[4]  D. Andrews CONSISTENCY IN NONLINEAR ECONOMETRIC MODELS: A GENERIC UNIFORM LAW OF LARGE NUMBERS , 1987 .

[5]  Timo Dimitriadis,et al.  A joint quantile and expected shortfall regression framework , 2017, Electronic Journal of Statistics.

[6]  Andrew Harvey,et al.  Dynamic Models for Volatility and Heavy Tails , 2013 .

[7]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[8]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[9]  Sander Barendse Efficiently Weighted Estimation of Tail and Interquantile Expectations , 2017 .

[10]  Cathy W. S. Chen,et al.  Bayesian Expected Shortfall Forecasting Incorporating the Intraday Range , 2014 .

[11]  James W. Taylor Estimating Value at Risk and Expected Shortfall Using Expectiles , 2007 .

[12]  Johanna F. Ziegel,et al.  Higher order elicitability and Osband’s principle , 2015, 1503.08123.

[13]  Eric Jondeau,et al.  Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements , 2003 .

[14]  Simone Manganelli,et al.  Value at Risk Models in Finance , 2001, SSRN Electronic Journal.

[15]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[16]  Xiaohong Chen,et al.  MIXING AND MOMENT PROPERTIES OF VARIOUS GARCH AND STOCHASTIC VOLATILITY MODELS , 2002, Econometric Theory.

[17]  R. Engle,et al.  CAViaR , 1999 .

[18]  Alexander J. McNeil,et al.  Quantitative Risk Management: Concepts, Techniques and Tools Revised edition , 2015 .

[19]  W. Härdle,et al.  Discussion Paper 2015-047 TERES-Tail Event Risk Expectile based Shortfall , 2015 .

[20]  Zongwu Cai,et al.  Nonparametric estimation of conditional VaR and expected shortfall , 2008 .

[21]  Ivana Komunjer,et al.  Quasi-maximum likelihood estimation for conditional quantiles , 2005 .

[22]  Andrew A. Weiss,et al.  Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation , 1991, Econometric Theory.

[23]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[24]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[25]  James W. Taylor Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution , 2019 .

[26]  Zaichao Du,et al.  Backtesting Expected Shortfall: Accounting for Tail Risk , 2015, Manag. Sci..

[27]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[28]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[29]  S. Koopman,et al.  Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models , 2012 .

[30]  R. Lumsdaine,et al.  Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models , 1996 .

[31]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[32]  Kevin Sheppard,et al.  Evaluating Volatility and Correlation Forecasts , 2009 .

[33]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[34]  Christian Francq,et al.  Risk-parameter estimation in volatility models , 2012 .

[35]  W. Newey,et al.  Asymmetric Least Squares Estimation and Testing , 1987 .

[36]  Dongming Zhu,et al.  Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions , 2011 .

[37]  Drew D. Creal,et al.  Generalized autoregressive score models with applications ∗ , 2010 .

[38]  F. Diebold,et al.  VOLATILITY AND CORRELATION FORECASTING , 2006 .

[39]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[40]  Andrew J. Patton Volatility Forecast Comparison Using Imperfect Volatility Proxies , 2006 .

[41]  H. Holzmann,et al.  Asymptotics for the expected shortfall , 2016, 1611.07222.

[42]  Benedikt M. Pötscher,et al.  A UNIFORM LAW OF LARGE NUMBERS FOR DEPENDENT AND HETEROGENEOUS DATA PROCESSES , 1989 .