Allosteric modulation of metabotropic glutamate receptor 5 affects phosphorylation, internalization, and desensitization of the μ-opioid receptor

[1]  A. Vaccarino,et al.  Delayed application of MK-801 attenuates development of morphine tolerance in rats , 1991, Brain Research.

[2]  P. Seeburg The TINS/TiPS Lecture the molecular biology of mammalian glutamate receptor channels , 1993, Trends in Neurosciences.

[3]  D. Hurlbut,et al.  Blockade of morphine-induced analgesia and tolerance in mice by MK-801 , 1993, Brain Research.

[4]  A. Dickenson Central acute pain mechanisms. , 1995, Annals of medicine.

[5]  H. Schulman,et al.  The human mu opioid receptor: modulation of functional desensitization by calcium/calmodulin-dependent protein kinase and protein kinase C , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  T. Coderre,et al.  The contribution of metabotropic glutamate receptors (mGluRs) to formalin-induced nociception , 1996, Pain.

[7]  Ayae Kinoshita,et al.  Differential Presynaptic Localization of Metabotropic Glutamate Receptor Subtypes in the Rat Hippocampus , 1997, The Journal of Neuroscience.

[8]  S. Wakisaka,et al.  Regeneration of periodontal primary afferents of the rat incisor following injury of the inferior alveolar nerve with special reference to neuropeptide Y-like immunoreactive primary afferents , 1997, Brain Research.

[9]  T. Kroslak,et al.  Site Mutation in the Rat μ‐Opioid Receptor Demonstrates the Involvement of Calcium/Calmodulin‐Dependent Protein Kinase II in Agonist‐Mediated Desensitization , 1997, Journal of neurochemistry.

[10]  T. Görcs,et al.  Metabotropic glutamate receptor in GHRH and β‐endorphin neurones of the hypothalamic arcuate nucleus , 1997, Neuroreport.

[11]  J. Pin,et al.  Pharmacology and functions of metabotropic glutamate receptors. , 1997, Annual review of pharmacology and toxicology.

[12]  F. Conquet,et al.  Immunohistochemical localization of the mGluR1β metabotropic glutamate receptor in the adult rodent forebrain: Evidence for a differential distribution of mGluR1 splice variants , 1998, The Journal of comparative neurology.

[13]  H. Loh,et al.  Distinct Differences Between Morphine‐ and [d‐Ala2,N‐MePhe4,Gly‐ol5]‐Enkephalin‐ μ‐Opioid Receptor Complexes Demonstrated by Cyclic AMP‐Dependent Protein Kinase Phosphorylation , 1998, Journal of neurochemistry.

[14]  S. Schulz,et al.  Carboxyl-terminal Splicing of the Rat μ Opioid Receptor Modulates Agonist-mediated Internalization and Receptor Resensitization* , 1998, The Journal of Biological Chemistry.

[15]  S. Schulz,et al.  Replacement of threonine 394 by alanine facilitates internalization and resensitization of the rat mu opioid receptor. , 1999, Molecular pharmacology.

[16]  G. Koob,et al.  Chronic Morphine Treatment Alters NMDA Receptor-Mediated Synaptic Transmission in the Nucleus Accumbens , 1999, The Journal of Neuroscience.

[17]  W Zieglgänsberger,et al.  Expression of metabotropic glutamate receptor subtype mRNA (mGluR1-8) in human cerebellum. , 1999, Neuroreport.

[18]  Roland Heckendorn,et al.  2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist , 1999, Neuropharmacology.

[19]  R. Eglen,et al.  Ions in the fire: recent ion-channel research and approaches to pain therapy. , 1999, Trends in pharmacological sciences.

[20]  T. Kroslak,et al.  Allelic variation S268P of the human mu-opioid receptor affects both desensitization and G protein coupling. , 2000, Molecular pharmacology.

[21]  L. Berrino,et al.  Periaqueductal gray matter metabotropic glutamate receptors modulate formalin-induced nociception , 2000, Pain.

[22]  T. Salt,et al.  Contributions of mGlu1 and mGlu5 receptors to interactions with N-methyl-d-aspartate receptor-mediated responses and nociceptive sensory responses of rat thalamic neurons , 2000, Neuroscience.

[23]  U. Kumar,et al.  Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. , 2000, Science.

[24]  J. Castro-Lopes,et al.  Antinociceptive effect of a group II metabotropic glutamate receptor antagonist in the thalamus of monoarthritic rats , 2000, Neuroscience Letters.

[25]  H. Lother,et al.  AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration , 2000, Nature.

[26]  P. Popik,et al.  Clinically available NMDA receptor antagonists memantine and dextromethorphan reverse existing tolerance to the antinociceptive effects of morphine in mice , 2000, Naunyn-Schmiedeberg's Archives of Pharmacology.

[27]  F. Bordi,et al.  Involvement of mGluR5 on acute nociceptive transmission , 2000, Brain Research.

[28]  E. V. Van Bockstaele,et al.  Evidence for coexistence of enkephalin and glutamate in axon terminals and cellular sites for functional interactions of their receptors in the rat locus coeruleus , 2000, The Journal of comparative neurology.

[29]  C. Bonde,et al.  The metabotropic glutamate receptor agonist 1S,3R-ACPD stimulates and modulates NMDA receptor mediated excitotoxicity in organotypic hippocampal slice cultures , 2001, Brain Research.

[30]  V. Höllt,et al.  C-terminal Splice Variants of the Mouse μ-Opioid Receptor Differ in Morphine-induced Internalization and Receptor Resensitization* , 2001, The Journal of Biological Chemistry.

[31]  S. Schulz,et al.  Homo- and Heterodimerization of Somatostatin Receptor Subtypes , 2001, The Journal of Biological Chemistry.

[32]  C. Parsons,et al.  NMDA receptors as targets for drug action in neuropathic pain. , 2001, European journal of pharmacology.

[33]  M. Fundytus Glutamate Receptors and Nociception , 2001, CNS drugs.

[34]  A. Reeve,et al.  mGlu5 receptors and nociceptive function II. mGlu5 receptors functionally expressed on peripheral sensory neurones mediate inflammatory hyperalgesia , 2001, Neuropharmacology.

[35]  R. Gereau,et al.  Peripheral group I metabotropic glutamate receptors modulate nociception in mice , 2001, Nature Neuroscience.

[36]  W. Spooren,et al.  Metabotropic glutamate receptor subtype 5 (mGlu5) and nociceptive function I. Selective blockade of mGlu5 receptors in models of acute, persistent and chronic pain , 2001, Neuropharmacology.

[37]  S. Mennerick,et al.  Covalent and noncovalent interactions mediate metabotropic glutamate receptor mGlu5 dimerization. , 2001, Molecular pharmacology.

[38]  W. Spooren,et al.  Novel allosteric antagonists shed light on mglu(5) receptors and CNS disorders. , 2001, Trends in pharmacological sciences.

[39]  B. Kieffer,et al.  Opioid Tolerance–In Search of the Holy Grail , 2002, Cell.

[40]  D. Benson,et al.  Structural Remodeling of the Synapse in Response to Physiological Activity , 2002, Cell.

[41]  C. Hulsebosch,et al.  Group I metabotropic glutamate receptors in spinal cord injury: roles in neuroprotection and the development of chronic central pain. , 2002, Journal of neurotrauma.

[42]  T. Coderre,et al.  Antisense oligonucleotide knockdown of mGluR1 alleviates hyperalgesia and allodynia associated with chronic inflammation , 2002, Pharmacology Biochemistry and Behavior.

[43]  A. Lau,et al.  Heterodimerization of α2A- and β1-Adrenergic Receptors* , 2003, The Journal of Biological Chemistry.

[44]  S. Schulz,et al.  Heterodimerization of Substance P and μ-Opioid Receptors Regulates Receptor Trafficking and Resensitization* , 2003, Journal of Biological Chemistry.

[45]  Luigi F Agnati,et al.  Molecular Mechanisms and Therapeutical Implications of Intramembrane Receptor/Receptor Interactions among Heptahelical Receptors with Examples from the Striatopallidal GABA Neurons , 2003, Pharmacological Reviews.

[46]  S. Schulz,et al.  Morphine induces terminal μ‐opioid receptor desensitization by sustained phosphorylation of serine‐375 , 2004, The EMBO journal.

[47]  Yoshihiro Kubo,et al.  Ligand-induced rearrangement of the dimeric metabotropic glutamate receptor 1α , 2004, Nature Structural &Molecular Biology.

[48]  V. Neugebauer,et al.  The Amygdala and Persistent Pain , 2004, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[49]  B. Kobilka,et al.  Toward understanding GPCR dimers , 2004, Nature Structural &Molecular Biology.

[50]  L. Prézeau,et al.  Closed state of both binding domains of homodimeric mGlu receptors is required for full activity , 2004, Nature Structural &Molecular Biology.

[51]  Bita Moghaddam,et al.  Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia , 2004, Psychopharmacology.

[52]  S. Schulz,et al.  Phospholipase D2 modulates agonist‐induced µ‐opioid receptor desensitization and resensitization , 2003, Journal of neurochemistry.

[53]  Karolina Nilsson,et al.  Recent advances in non-competitive mGlu5 receptor antagonists and their potential therapeutic applications. , 2005, Current topics in medicinal chemistry.

[54]  T. Yeh,et al.  Heterodimerization of opioid receptor‐like 1 and µ‐opioid receptors impairs the potency of µ receptor agonist , 2005, Journal of neurochemistry.

[55]  C. Lindsley,et al.  A Novel Selective Positive Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5 Has in Vivo Activity and Antipsychotic-Like Effects in Rat Behavioral Models , 2005, Journal of Pharmacology and Experimental Therapeutics.

[56]  Francine Acher,et al.  Asymmetric Functioning of Dimeric Metabotropic Glutamate Receptors Disclosed by Positive Allosteric Modulators* , 2005, Journal of Biological Chemistry.

[57]  Merryl D. Cramer,et al.  In vitro metabolic studies on the selective metabotropic glutamate receptor sub-type 5 (mGluR5) antagonist 3-[(2-methyl-1,3-thiazol-4-yl) ethynyl]-pyridine (MTEP) , 2006, Neuroscience Letters.

[58]  G. Labesse,et al.  Coupling of Agonist Binding to Effector Domain Activation in Metabotropic Glutamate-like Receptors* , 2006, Journal of Biological Chemistry.

[59]  S. Ferguson,et al.  Associate editor: P. Molenaar , 2022 .

[60]  Y. Bae,et al.  Peripheral mGluR5 antagonist attenuated craniofacial muscle pain and inflammation but not mGluR1 antagonist in lightly anesthetized rats , 2006, Brain Research Bulletin.

[61]  J. Ro,et al.  Peripheral metabotropic glutamate receptor 5 mediates mechanical hypersensitivity in craniofacial muscle via protein kinase C dependent mechanisms , 2007, Neuroscience.

[62]  H. Navarro,et al.  mGluR5 antagonists that block calcium mobilization in vitro also reverse (S)-3,5-DHPG-induced hyperalgesia and morphine antinociceptive tolerance in vivo , 2008, Brain Research.

[63]  L. Brandenburg,et al.  Role of receptor internalization in the agonist‐induced desensitization of cannabinoid type 1 receptors , 2008, Journal of neurochemistry.

[64]  Thomas Koch,et al.  Role of receptor internalization in opioid tolerance and dependence. , 2008, Pharmacology & therapeutics.