Differentiable Automatic Data Augmentation

[1]  Ion Stoica,et al.  Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules , 2019, ICML.

[2]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[3]  Ben Poole,et al.  Categorical Reparameterization with Gumbel-Softmax , 2016, ICLR.

[4]  Yee Whye Teh,et al.  The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables , 2016, ICLR.

[5]  Xavier Gastaldi,et al.  Shake-Shake regularization of 3-branch residual networks , 2017, ICLR.

[6]  Seong Joon Oh,et al.  CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[7]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[8]  Andrew Y. Ng,et al.  Reading Digits in Natural Images with Unsupervised Feature Learning , 2011 .

[9]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Wei Wu,et al.  Online Hyper-Parameter Learning for Auto-Augmentation Strategy , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[11]  Kaiming He,et al.  Mask R-CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[12]  Takuya Akiba,et al.  Shakedrop Regularization for Deep Residual Learning , 2018, IEEE Access.

[13]  Hongyi Zhang,et al.  mixup: Beyond Empirical Risk Minimization , 2017, ICLR.

[14]  Liang Lin,et al.  SNAS: Stochastic Neural Architecture Search , 2018, ICLR.

[15]  David Duvenaud,et al.  Backpropagation through the Void: Optimizing control variates for black-box gradient estimation , 2017, ICLR.

[16]  Kai Chen,et al.  MMDetection: Open MMLab Detection Toolbox and Benchmark , 2019, ArXiv.

[17]  Hiroshi Inoue,et al.  Data Augmentation by Pairing Samples for Images Classification , 2018, ArXiv.

[18]  Yoshua Bengio,et al.  Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation , 2013, ArXiv.

[19]  Quoc V. Le,et al.  AutoAugment: Learning Augmentation Strategies From Data , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Michael Figurnov,et al.  Monte Carlo Gradient Estimation in Machine Learning , 2019, J. Mach. Learn. Res..

[21]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[22]  Graham W. Taylor,et al.  Improved Regularization of Convolutional Neural Networks with Cutout , 2017, ArXiv.

[23]  Kaiming He,et al.  Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[24]  Yi Yang,et al.  Searching for a Robust Neural Architecture in Four GPU Hours , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Nikos Komodakis,et al.  Wide Residual Networks , 2016, BMVC.

[26]  Yiming Yang,et al.  DARTS: Differentiable Architecture Search , 2018, ICLR.

[27]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[28]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).