Distinguishing homomorphisms of infinite graphs

We supply an upper bound on the distinguishing chromatic number of certain infinite graphs satisfying an adjacency property. Distinguishing proper $n$-colourings are generalized to the new notion of distinguishing homomorphisms. We prove that if a graph $G$ satisfies the connected existentially closed property and admits a homomorphism to $H$, then it admits continuum-many distinguishing homomorphisms from $G$ to $H$ join $K_2.$ Applications are given to a family universal $H$-colourable graphs, for $H$ a finite core.

[1]  Anthony Bonato,et al.  Distinguishing number and adjacency properties , 2010 .

[2]  Karen L. Collins,et al.  Bounds on the Distinguishing Chromatic Number , 2009, Electron. J. Comb..

[3]  Peter Mihók,et al.  On universal graphs for hom-properties , 2009, Discuss. Math. Graph Theory.

[4]  Wilfried Imrich,et al.  Distinguishing Infinite Graphs , 2007, Electron. J. Comb..

[5]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[6]  Claude Laflamme,et al.  Distinguishing Chromatic Numbers of Bipartite Graphs , 2009, Electron. J. Comb..

[8]  Anthony Bonato Homomorphisms and amalgamation , 2003, Discret. Math..

[9]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[10]  Claude Laflamme,et al.  Distinguishing Number of Countable Homogeneous Relational Structures , 2010, Electron. J. Comb..

[11]  Karen L. Collins,et al.  The Distinguishing Chromatic Number , 2006, Electron. J. Comb..

[12]  D. West Introduction to Graph Theory , 1995 .

[13]  Peter J. Cameron,et al.  The Random Graph , 2013, The Mathematics of Paul Erdős II.

[14]  Matemáticas Theory of Relations , 2013 .

[15]  Michael O. Albertson,et al.  Symmetry Breaking in Graphs , 1996, Electron. J. Comb..

[16]  Anthony Bonato A family of universal pseudo-homogeneous G-colourable graphs , 2002, Discret. Math..