Computing the global optimum of a multivariate polynomial over the reals

Let f be a polynomial in Q[X<sub>1</sub>, ..., X<sub>n</sub>] of degree D. We provide an efficient algorithm in practice to compute the global supremum sup<sub>x∈ R<sup>n</sup></sub> f(x) of f (or its infimum inf<sub>{x∈ R<sup>n</sup>}</sub>f(x)). The complexity of our method is bounded by D<sup>O</sup>(n)}. In a probabilistic model, a more precise result yields a complexity bounded by O(n<sup>7</sup>D<sup>4n</sup>) arithmetic operations in Q. Our implementation is more efficient by several orders of magnitude than previous ones based on quantifier elimination. Sometimes, it can tackle problems that numerical techniques do not reach. Our algorithm is based on the computation of generalized critical values of the mapping x-> f(x), i.e. the set of points {c∈ C mid exists (x<sub>ll</sub>)<sub>ll</sub>∈ N}⊂ C<sup>n</sup> ;f(x<sub>ll</sub>)-> c, ;||x<sub>ll</sub>||||d<sub>x<sub>ll</sub></sub> f||-> 0 { when }ll-> ∞}. We prove that the global optimum of f lies in its set of generalized critical values and provide an efficient way of deciding which value is the global optimum.

[1]  Mohab Safey El Din,et al.  Testing Sign Conditions on a Multivariate Polynomial and Applications , 2007, Math. Comput. Sci..

[2]  C. Delporte Habilitation à diriger des recherches , 2003 .

[3]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[4]  P. Rostalski,et al.  Semidefinite characterization and computation of real radical ideals , 2006 .

[5]  Hazel Everett,et al.  The Voronoi Diagram of Three Lines , 2007, SCG '07.

[6]  Joos Heintz,et al.  On the Theoretical and Practical Complexity of the Existential Theory of Reals , 1993, Comput. J..

[7]  Y. N. Lakshman A Single Exponential Bound on the Complexity of Computing Gröbner Bases of Zero Dimensional Ideals , 1991 .

[8]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[9]  J. E. Morais,et al.  When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.

[10]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[11]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[12]  Zbigniew Jelonek,et al.  On asymptotic critical values of a complex polynomial , 2003 .

[13]  Marc Giusti,et al.  Polar Varieties, Real Equation Solving, and Data Structures: The Hypersurface Case , 1997, J. Complex..

[14]  Éric Schost,et al.  Properness Defects of Projections and Computation of at Least One Point in Each Connected Component of a Real Algebraic Set , 2004, Discret. Comput. Geom..

[15]  Marc Giusti,et al.  Generalized polar varieties: geometry and algorithms , 2005, J. Complex..

[16]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[17]  Mohab Safey El Din,et al.  Properness defects of projections and computation of one point in each connected component of a real algebraic set , 2003 .

[18]  Fabrice Rouillier,et al.  Solving parametric polynomial systems , 2004, J. Symb. Comput..

[19]  Mohab Safey El Din Finding Sampling Points on Real Hypersurfaces in Easier in Singular Situations , 2005 .

[20]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[21]  Fabrice Rouillier,et al.  Real Solving for Positive Dimensional Systems , 2002, J. Symb. Comput..

[22]  Ioannis Z. Emiris,et al.  Real algebraic numbers and polynomial systems of small degree , 2008, Theor. Comput. Sci..

[23]  Daniel Lazard,et al.  Quantifier Elimination: Optimal Solution for Two Classical Examples , 1988, J. Symb. Comput..

[24]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[25]  Marc Giusti,et al.  Lower bounds for diophantine approximations , 1997 .

[26]  Y. N. Lakshman,et al.  On the Complexity of Zero-dimensional Algebraic Systems , 1991 .

[27]  James Demmel,et al.  Minimizing Polynomials via Sum of Squares over the Gradient Ideal , 2004, Math. Program..

[28]  J. E. Morais,et al.  Lower Bounds for diophantine Approximation , 1996 .

[29]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[30]  Kim-Chuan Toh,et al.  Behavioral measures and their correlation with IPM iteration counts on semi-definite programming problems , 2007, Math. Program..

[31]  Fabrice Rouillier,et al.  Finding at Least One Point in Each Connected Component of a Real Algebraic Set Defined by a Single Equation , 2000, J. Complex..

[32]  B. Bank,et al.  Polar varieties and efficient real elimination , 2000 .

[33]  Pablo A. Parrilo,et al.  Minimizing Polynomial Functions , 2001, Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science.

[34]  Marc Giusti,et al.  Generalized polar varieties and an efficient real elimination , 2004, Kybernetika.

[35]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[36]  Didier Henrion Polynômes et optimisation convexe en commande robuste , 2007 .

[37]  Mohab Safey El Din,et al.  Practical and Theoretical Issues for the Computation of Generalized Critical Values of a Polynomial Mapping , 2008, ASCM.

[38]  Grégoire Lecerf,et al.  Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers , 2003, J. Complex..

[39]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[40]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[41]  K. Kurdyka,et al.  SEMIALGEBRAIC SARD THEOREM FOR GENERALIZED CRITICAL VALUES , 2000 .

[42]  Markus Schweighofer Global Optimization of Polynomials Using Gradient Tentacles and Sums of Squares , 2006, SIAM J. Optim..

[43]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[44]  B. Bank,et al.  Polar Varieties and Efficient Real Equation Solving: The Hypersurface Case , 1996 .