Information Theory and Population Genetics

The key findings of classical population genetics are derived using a framework based on information theory using the entropies of the allele frequency distribution as a basis. The common results for drift, mutation, selection, and gene flow will be rewritten both in terms of information theoretic measurements and used to draw the classic conclusions for balance conditions and common features of one locus dynamics. Linkage disequilibrium will also be discussed including the relationship between mutual information and r^2 and a simple model of hitchhiking.

[1]  Rory A. Fisher,et al.  XVII—The distribution of gene ratios for rare mutations , 1931 .

[2]  Shili Lin,et al.  Multilocus LD measure and tagging SNP selection with generalized mutual information , 2005, Genetic epidemiology.

[3]  P. Hedrick,et al.  Gametic disequilibrium measures: proceed with caution. , 1987, Genetics.

[4]  J. Plotkin,et al.  The Population Genetics of dN/dS , 2008, PLoS genetics.

[5]  John Maynard Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.

[6]  J. Crow,et al.  Shannon's brief foray into genetics. , 2001, Genetics.

[7]  Yuval Rabani,et al.  A computational view of population genetics , 1995, STOC '95.

[8]  Y. Svirezhev,et al.  Diffusion Models of Population Genetics , 1990 .

[9]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[10]  M. Hill Diversity and Evenness: A Unifying Notation and Its Consequences , 1973 .

[11]  G. A. Watterson Some Theoretical Aspects of Diffusion Theory in Population Genetics , 1962 .

[12]  B. Frieden,et al.  Population genetics from an information perspective. , 2001, Journal of theoretical biology.

[13]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[14]  M. Kimura RANDOM GENETIC DRIFT IN MULTI‐ALLELIC LOCUS , 1955 .

[15]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[16]  Chris Watkins,et al.  Selective Breeding Analysed as a Communication Channel: Channel Capacity as a Fundamental Limit on Adaptive Complexity , 2008, 2008 10th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[17]  V. Loeschcke,et al.  Models in Population Genetics , 1984 .

[18]  Motoo Kimura,et al.  Some Problems of Stochastic Processes in Genetics , 1957 .

[19]  James F. Crow,et al.  The origins of theoretical population genetics , 1972 .

[20]  M. Neale,et al.  Quantitative Genetics , 2018, Population Genetics and Microevolutionary Theory.

[21]  Francis Comets,et al.  Large Deviations and Applications , 2011, International Encyclopedia of Statistical Science.

[22]  Robert K. Peet,et al.  The Measurement of Species Diversity , 1974 .

[23]  John H.Gillespie Population Genetics: A Concise Guide , 1997 .

[24]  Christopher Preston,et al.  Pollen-Mediated Movement of Herbicide Resistance Between Commercial Canola Fields , 2002, Science.

[25]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[26]  J. Weeks An introduction to population , 2012 .

[27]  R. A. Fisher,et al.  On the dominance ratio , 1990 .

[28]  L. Jost Entropy and diversity , 2006 .

[29]  H. Geiringer On the Probability Theory of Linkage in Mendelian Heredity , 1944 .

[30]  A. Sinclair,et al.  A computational view of population genetics , 1998 .

[31]  P. A. P. Moran,et al.  Entropy, Markov processes and Boltzmann's H-theorem , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  K. Rohde,et al.  Entropy as a Measure for Linkage Disequilibrium over Multilocus Haplotype Blocks , 2003, Human Heredity.

[33]  Lei Zhang,et al.  A multilocus linkage disequilibrium measure based on mutual information theory and its applications , 2009, Genetica.

[34]  Xiao-Long Wang,et al.  [Maximum entropy principle and population genetic equilibrium]. , 2002, Yi chuan xue bao = Acta genetica Sinica.

[35]  C. Shannon,et al.  An algebra for theoretical genetics , 1940 .

[36]  F. H. Jackson q-Difference Equations , 1910 .

[37]  R. Buerger The Mathematical Theory of Selection, Recombination, and Mutation , 2000 .

[38]  J. Thoday Population Genetics , 1956, Nature.

[39]  S Wright,et al.  The Differential Equation of the Distribution of Gene Frequencies. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Michael Mandelstam,et al.  On the Bandwagon? , 2007 .

[41]  T. Jukes,et al.  The neutral theory of molecular evolution. , 2000, Genetics.

[42]  M. Kimura Evolutionary Rate at the Molecular Level , 1968, Nature.

[43]  E. M. Elsayed,et al.  DIFFERENCE EQUATIONS , 2001 .

[44]  R. Lewontin,et al.  On measures of gametic disequilibrium. , 1988, Genetics.

[45]  Yuval Rabani,et al.  A computational view of population genetics , 1995, Symposium on the Theory of Computing.

[46]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .