Lexical Event Ordering with an Edge-Factored Model

Extensive lexical knowledge is necessary for temporal analysis and planning tasks. We address in this paper a lexical setting that allows for the straightforward incorporation of rich features and structural constraints. We explore a lexical event ordering task, namely determining the likely temporal order of events based solely on the identity of their predicates and arguments. We propose an “edgefactored” model for the task that decomposes over the edges of the event graph. We learn it using the structured perceptron. As lexical tasks require large amounts of text, we do not attempt manual annotation and instead use the textual order of events in a domain where this order is aligned with their temporal order, namely cooking recipes.

[1]  Robert L. Mercer,et al.  Class-Based n-gram Models of Natural Language , 1992, CL.

[2]  Reid Swanson,et al.  Learning a Probabilistic Model of Event Sequences from Internet Weblog Stories , 2008, FLAIRS Conference.

[3]  Ivan Titov,et al.  Inducing Neural Models of Script Knowledge , 2014, CoNLL.

[4]  James Pustejovsky,et al.  Machine Learning of Temporal Relations , 2006, ACL.

[5]  Vincent Ng,et al.  Classifying Temporal Relations with Rich Linguistic Knowledge , 2013, NAACL.

[6]  L. Getoor,et al.  1 Global Inference for Entity and Relation Identification via a Linear Programming Formulation , 2007 .

[7]  Ido Dagan,et al.  Recognizing Textual Entailment: Models and Applications , 2013, Recognizing Textual Entailment: Models and Applications.

[8]  Paramita Mirza,et al.  Classifying Temporal Relations with Simple Features , 2014, EACL.

[9]  Bernt Schiele,et al.  Grounding Action Descriptions in Videos , 2013, TACL.

[10]  D. Roth 1 Global Inference for Entity and Relation Identification via a Linear Programming Formulation , 2007 .

[11]  Marie-Francine Moens,et al.  Skip N-grams and Ranking Functions for Predicting Script Events , 2012, EACL.

[12]  Peter Clark,et al.  Learning Biological Processes with Global Constraints , 2013, EMNLP.

[13]  Nathanael Chambers,et al.  Unsupervised Learning of Narrative Event Chains , 2008, ACL.

[14]  Ehud Reiter,et al.  Book Reviews: Building Natural Language Generation Systems , 2000, CL.

[15]  Oren Etzioni,et al.  Generating Coherent Event Schemas at Scale , 2013, EMNLP.

[16]  Yuji Matsumoto,et al.  Jointly Identifying Temporal Relations with Markov Logic , 2009, ACL.

[17]  Philipp Cimiano,et al.  Exploiting Ontology Lexica for Generating Natural Language Texts from RDF Data , 2013, ENLG.

[18]  Michael Collins,et al.  Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms , 2002, EMNLP.

[19]  Robert Dale,et al.  Building Natural Language Generation Systems: Figures , 2000 .

[20]  Ari Rappoport,et al.  Fully Unsupervised Discovery of Concept-Specific Relationships by Web Mining , 2007, ACL.

[21]  Jason Eisner,et al.  Learning Linear Ordering Problems for Better Translation , 2009, EMNLP.

[22]  Mirella Lapata,et al.  Probabilistic Text Structuring: Experiments with Sentence Ordering , 2003, ACL.

[23]  Mark Steedman,et al.  Learning STRIPS Operators from Noisy and Incomplete Observations , 2012, UAI.

[24]  Mirella Lapata,et al.  Learning Sentence-internal Temporal Relations , 2006, J. Artif. Intell. Res..

[25]  L MercerRobert,et al.  Class-based n-gram models of natural language , 1992 .

[26]  James Pustejovsky,et al.  TimeML: Robust Specification of Event and Temporal Expressions in Text , 2003, New Directions in Question Answering.

[27]  Tom M. Mitchell,et al.  Acquiring temporal constraints between relations , 2012, CIKM.

[28]  Patrick Pantel,et al.  VerbOcean: Mining the Web for Fine-Grained Semantic Verb Relations , 2004, EMNLP.

[29]  James Pustejovsky,et al.  SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations , 2013, *SEMEVAL.

[30]  Daniel S. Weld,et al.  Temporal Information Extraction , 2010, AAAI.

[31]  Mirella Lapata,et al.  Automatic Evaluation of Information Ordering: Kendall’s Tau , 2006, CL.

[32]  Christopher D. Manning,et al.  The Stanford Typed Dependencies Representation , 2008, CF+CDPE@COLING.

[33]  Ani Nenkova,et al.  Using Syntax to Disambiguate Explicit Discourse Connectives in Text , 2009, ACL.

[34]  Nathanael Chambers,et al.  Jointly Combining Implicit Constraints Improves Temporal Ordering , 2008, EMNLP.

[35]  Manfred Pinkal,et al.  Learning Script Knowledge with Web Experiments , 2010, ACL.

[36]  Taylor Cassidy,et al.  An Annotation Framework for Dense Event Ordering , 2014, ACL.

[37]  Stefanie Tellex,et al.  Interpreting and Executing Recipes with a Cooking Robot , 2012, ISER.

[38]  Earl J. Wagner,et al.  Cooking with Semantics , 2014, ACL 2014.

[39]  Koby Crammer,et al.  Online Large-Margin Training of Dependency Parsers , 2005, ACL.

[40]  Robert Dixon,et al.  A Semantic Approach to English Grammar , 2005 .

[41]  Ivan Titov,et al.  A Hierarchical Bayesian Model for Unsupervised Induction of Script Knowledge , 2014, EACL.

[42]  Nathanael Chambers,et al.  Unsupervised Learning of Narrative Schemas and their Participants , 2009, ACL.

[43]  Mark Steedman,et al.  Plans, Affordances, And Combinatory Grammar , 2002 .

[44]  Raymond J. Mooney,et al.  Statistical Script Learning with Multi-Argument Events , 2014, EACL.

[45]  Mirella Lapata,et al.  Modeling Local Coherence: An Entity-Based Approach , 2005, ACL.