The q-Tetrahedron Algebra and Its Finite Dimensional Irreducible Modules

Recently, Hartwig and the second author found a presentation for the three-point 𝔰𝔩2 loop algebra via generators and relations. To obtain this presentation they defined an algebra ⊠ by generators and relations, and displayed an isomorphism from ⊠ to the three-point 𝔰𝔩2 loop algebra. We introduce a quantum analog of ⊠ which we call ⊠q. We define ⊠q via generators and relations. We show how ⊠q is related to the quantum group Uq(𝔰𝔩2), the Uq(𝔰𝔩2) loop algebra, and the positive part of . We describe the finite dimensional irreducible ⊠q-modules under the assumption that q is not a root of 1, and the underlying field is algebraically closed.

[1]  Y. Stroganov,et al.  Chiral Potts model as a descendant of the six-vertex model , 1990 .

[2]  Helen Au-Yang,et al.  Onsager’s Star-Triangle Equation: Master Key to Integrability , 1989 .

[3]  The sl2 Loop Algebra Symmetry of the Six-Vertex Model at Roots of Unity , 1999, cond-mat/9912141.

[4]  Dolan–Grady relations and noncommutative quasi-exactly solvable systems , 2002, hep-th/0212117.

[5]  Paul M. Terwilliger,et al.  Tridiagonal pairs and the quantum affine algebra $${\boldmath U_q({\widehat {sl}}_2)}$$ , 2007 .

[6]  Paul M. Terwilliger,et al.  Tridiagonal pairs and the quantum affine algebra Uq(sl2) (代数的組合せ論) , 2005 .

[7]  Paul M. Terwilliger,et al.  The Tetrahedron algebra, the Onsager algebra, and the sl2 loop algebra , 2007 .

[8]  P. Podles,et al.  Introduction to Quantum Groups , 1998 .

[9]  B. Davies Onsager's algebra and superintegrability , 1990 .

[10]  Nicolai Reshetikhin,et al.  Quantum Groups , 1993 .

[11]  I. T. Ivanov,et al.  sl(N) Onsager's algebra and integrability , 1995 .

[12]  B. McCoy,et al.  Eigenvalue Spectrum of the Superintegrable Chiral Potts Model , 1989 .

[13]  The structure of quotients of the Onsager algebra by closed ideals *The structure of quotients of th , 1999, math/9911018.

[14]  V. Rittenberg,et al.  Zn-symmetric quantum chains with an infinite set of conserved charges and Zn zero modes , 1985 .

[15]  Paul M. Terwilliger,et al.  The quantum algebra Uq(sl2) and its equitable presentation , 2005, math/0507477.

[16]  Michael Grady,et al.  Conserved charges from self-duality , 1982 .

[17]  The $S_4$-action on tetrahedron algebra , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  B. Hartwig The Tetrahedron algebra and its finite-dimensional irreducible modules , 2006, math/0606197.

[19]  Paul M. Terwilliger,et al.  The universal central extension of the three-point sl2 loop algebra , 2005, math/0512422.

[20]  B. McCoy,et al.  Solvable Models in Statistical Mechanics and Riemann Surfaces of Genus Greater than One , 1988 .

[21]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[22]  Nonlinear holomorphic supersymmetry on Riemann surfaces , 2002, hep-th/0202077.

[24]  M. Bremner Generalized Affine Kac-Moody Lie Algebras Over Localizations of the Polynomial Ring in One Variable , 1994, Canadian Mathematical Bulletin.

[25]  A. Pressley,et al.  Quantum affine algebras , 1991 .

[26]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[27]  The equitable presentation for the quantum group Uq(g) associated with a symmetrizable Kac–Moody algebra g , 2005, math/0507478.

[28]  B. Davies Onsager’s algebra and the Dolan–Grady condition in the non‐self‐dual case , 1991 .

[29]  A Lie algebra for closed strings, spin chains, and gauge theories , 1998, hep-th/9806002.

[30]  B. McCoy,et al.  Excitation spectrum and order parameter for the integrable N-state chiral potts model , 1989 .