The basis of antigenic operon fragmentation in Bacteroidota and commensalism

The causes for variability of pro-inflammatory surface antigens that affect gut commensal/opportunistic dualism within the phylum Bacteroidota remain unclear (1, 2). Using the classical lipopolysaccharide/O-antigen ‘rfb operon’ in Enterobacteriaceae as a surface antigen model (5-gene-cluster rfbABCDX), and a recent rfbA-typing strategy for strain classification (3), we characterized the architecture/conservancy of the entire rfb operon in Bacteroidota. Analyzing complete genomes, we discovered that most Bacteroidota have the rfb operon fragmented into non-random gene-singlets and/or doublets/triplets, termed ‘minioperons’. To reflect global operon integrity, duplication, and fragmentation principles, we propose a five-category (infra/supernumerary) cataloguing system and a Global Operon Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA (thetaiotaomicron/fragilis) and likely natural selection in specific micro-niches. Bacteroides-insertions, also detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could explain why Bacteroidota have fewer KEGG-pathways despite large genomes (4). DNA insertions overrepresenting DNA-exchange-avid species, impact functional metagenomics by inflating gene-based pathway inference and overestimating ‘extra-species’ abundance. Using bacteria from inflammatory gut-wall cavernous micro-tracts (CavFT) in Crohn’s Disease (5), we illustrate that bacteria with supernumerary-fragmented operons cannot produce O-antigen, and that commensal/CavFT Bacteroidota stimulate macrophages with lower potency than Enterobacteriaceae, and do not induce peritonitis in mice. The impact of ‘foreign-DNA’ insertions on pro-inflammatory operons, metagenomics, and commensalism offers potential for novel diagnostics and therapeutics.

[1]  Yizhao Tang,et al.  Gut commensal Parabacteroides distasonis alleviates inflammatory arthritis , 2023, Gut.

[2]  James J. Davis,et al.  Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR , 2022, Nucleic Acids Res..

[3]  C. Alauzet,et al.  In Silico Study of Cell Surface Structures of Parabacteroides distasonis Involved in Its Maintenance within the Gut Microbiota , 2022, International journal of molecular sciences.

[4]  Vaidhvi Singh,et al.  Classification of Parabacteroides distasonis and other Bacteroidetes using O- antigen virulence gene: RfbA-Typing and hypothesis for pathogenic vs. probiotic strain differentiation , 2022, Gut microbes.

[5]  R. Overbeek,et al.  Supervised extraction of near-complete genomes from metagenomic samples: A new service in PATRIC , 2021, PloS one.

[6]  Sean M. Kearney,et al.  Elevated rates of horizontal gene transfer in the industrialized human microbiome , 2021, Cell.

[7]  S. Swift,et al.  Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide , 2021, Gut.

[8]  A. Basson,et al.  ‘Statistical Irreproducibility’ Does Not Improve with Larger Sample Size: How to Quantify and Address Disease Data Multimodality in Human and Animal Research , 2021, Journal of personalized medicine.

[9]  T. Kuwahara,et al.  Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health , 2021, Gut microbes.

[10]  M. Bernardini,et al.  Pairing Bacteroides vulgatus LPS Structure with Its Immunomodulatory Effects on Human Cellular Models , 2020, ACS central science.

[11]  P. Wearsch,et al.  The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health , 2020, Frontiers in Immunology.

[12]  Rick L. Stevens,et al.  The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities , 2019, Nucleic Acids Res..

[13]  C. de Castro,et al.  Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. , 2019, FEMS microbiology reviews.

[14]  S. Bertilsson,et al.  Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes , 2018, Microbiome.

[15]  Kyongbum Lee,et al.  Parabacteroides distasonis attenuates toll‐like receptor 4 signaling and Akt activation and blocks colon tumor formation in high‐fat diet‐fed azoxymethane‐treated mice , 2018, International journal of cancer.

[16]  Enrique Merino,et al.  Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes , 2018, Bioinform..

[17]  R. Irizarry,et al.  Meta-analysis of gut microbiome studies identifies disease-specific and shared responses , 2017, Nature Communications.

[18]  Tommi Vatanen,et al.  Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans , 2016, Cell.

[19]  Junrong Liang,et al.  DTDP-rhamnosyl transferase RfbF, is a newfound receptor-related regulatory protein for phage phiYe-F10 specific for Yersinia enterocolitica serotype O:3 , 2016, Scientific Reports.

[20]  Jaak Vilo,et al.  ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap , 2015, Nucleic Acids Res..

[21]  Katherine S Pollard,et al.  Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome , 2015, Genome Biology.

[22]  W. D. de Vos,et al.  The first 1000 cultured species of the human gastrointestinal microbiota , 2014, FEMS microbiology reviews.

[23]  Xin Chen,et al.  DOOR 2.0: presenting operons and their functions through dynamic and integrated views , 2013, Nucleic Acids Res..

[24]  W. Liu,et al.  Peritoneal Dialysis Peritonitis Caused by Bacteroides thetaiotaomicron , 2013, Peritoneal Dialysis International.

[25]  C. Yen,et al.  Peritoneal dialysis peritonitis by anaerobic pathogens: a retrospective case series , 2013, BMC Nephrology.

[26]  E. Martens,et al.  How glycan metabolism shapes the human gut microbiota , 2012, Nature Reviews Microbiology.

[27]  K. Honda,et al.  The microbiome in infectious disease and inflammation. , 2012, Annual review of immunology.

[28]  Enrique Merino,et al.  ProOpDB: Prokaryotic Operon DataBase , 2011, Nucleic Acids Res..

[29]  Adam M. Phillippy,et al.  Interactive metagenomic visualization in a Web browser , 2011, BMC Bioinformatics.

[30]  T. Hudcovic,et al.  Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition , 2011, Clinical and experimental immunology.

[31]  Shujiro Okuda,et al.  ODB: a database for operon organizations, 2011 update , 2010, Nucleic Acids Res..

[32]  E. Goldstein,et al.  First report of Parabacteroides goldsteinii bacteraemia in a patient with complicated intra-abdominal infection. , 2010, Anaerobe.

[33]  S. Mazmanian,et al.  A pathobiont of the microbiota balances host colonization and intestinal inflammation. , 2010, Cell host & microbe.

[34]  E. Rocha The organization of the bacterial genome. , 2008, Annual review of genetics.

[35]  R. Aminov,et al.  Commensal gut bacteria: mechanisms of immune modulation. , 2005, Trends in immunology.

[36]  P. Reeves,et al.  Evolutionary origins and sequence of the Escherichia coli O4 O-antigen gene cluster. , 2005, FEMS microbiology letters.

[37]  F. Bäckhed,et al.  Structural requirements for TLR4-mediated LPS signalling: a biological role for LPS modifications. , 2003, Microbes and infection.

[38]  J. Klena,et al.  Function of the rfb gene cluster and the rfe gene in the synthesis of O antigen by Shigella dysenteriae 1 , 1993, Molecular microbiology.

[39]  D. C. Beaver,et al.  Gram-Negative Bacilli of the Genus Bacteroides , 1936, Journal of bacteriology.

[40]  Bernard Gagnon,et al.  The Bacteroides of Human Feces , 1933, Journal of bacteriology.

[41]  Martí Vallés-Prats,et al.  Mono-bacterial peritonitis caused by Bacteroides thetaiotaomicron in a patient on peritoneal dialysis. , 2012, Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia.

[42]  S. Pettersson,et al.  Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA , 2004, Nature Immunology.

[43]  Susumu Goto,et al.  The KEGG databases at GenomeNet , 2002, Nucleic Acids Res..

[44]  P. Reeves,et al.  Escherichia coli K12 regains its O antigen. , 1994, Microbiology.

[45]  A. Weintraub,et al.  Structure-activity relationships in lipopolysaccharides of Bacteroides fragilis. , 1990, Reviews of infectious diseases.