A flexible pressure-sensitive array based on soft substrate

Abstract A 4 × 4 flexible pressure-sensitive array based on PET/ITO (polyethylene terephthalate/indium tin oxides) was designed and fabricated, with a size of 2.5 cm × 2.5 cm × 0.75 mm. The design effectively reduces the complexity of device structure. The array shows giant negative pressure coefficient of resistivity (NPCR) effect under 0–4 N (0–0.32 M Pa). The pressure-sensitive array exhibits high sensitivity and fast response-recovery to loads. And the response and recovery times are less than 2 s. The sensitive size and azimuth of the applied loading on the pressure-sensitivity array can be accurately recognized easily. The pressure-sensitivity array is stable, low-cost and easy for fabricating large-area sensors. The designed micro array may be used for in robot skin.

[1]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Rui Zhang,et al.  Universal resistivity-strain dependence of carbon nanotube/polymer composites , 2007 .

[3]  T. Ding,et al.  Changes in electrical resistance of carbon‐black‐filled silicone rubber composite during compression , 2007 .

[4]  A. Zecchina,et al.  Carbon-based piezoresistive polymer composites: Structure and electrical properties , 2013 .

[5]  Benjamin C. K. Tee,et al.  Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. , 2010, Nature materials.

[6]  Hyung-Kew Lee,et al.  A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment , 2006, Journal of Microelectromechanical Systems.

[7]  J. Zavickis,et al.  Polyisoprene-nanostructured carbon composite – A soft alternative for pressure sensor application , 2011 .

[8]  Ting Zhang,et al.  Reproducible layer-by-layer exfoliation for free-standing ultrathin films of single-walled carbon nanotubes , 2012 .

[9]  Wang Luheng,et al.  Influence of carbon black concentration on piezoresistivity for carbon-black-filled silicone rubber composite , 2009 .

[10]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[11]  Jinhyeong Kwon,et al.  Carbon nanotube based pressure sensor for flexible electronics , 2013 .

[12]  Tushar Sharma,et al.  Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application , 2012 .

[13]  Kwon Taek Lim,et al.  Preparation and properties of ethylene propylene diene rubber/multi walled carbon nanotube composites for strain sensitive materials , 2011 .

[14]  L. Chen,et al.  Piezoresistive Behavior Study on Finger‐Sensing Silicone Rubber/Graphite Nanosheet Nanocomposites , 2007 .

[15]  Luheng Wang,et al.  Study on compressive resistance creep and recovery of flexible pressure sensitive material based on carbon black filled silicone rubber composite , 2011 .

[16]  Q. Zheng,et al.  Time dependence of piezoresistance for the conductor-filled polymer composites , 2000 .

[17]  Takao Someya,et al.  A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Shuhong Yu,et al.  A Flexible and Highly Pressure‐Sensitive Graphene–Polyurethane Sponge Based on Fractured Microstructure Design , 2013, Advanced materials.

[19]  P. Ryser,et al.  Piezoresistive effect in epoxy–graphite composites , 2012 .

[20]  C. Bignardi,et al.  Stretchable and conformable metal–polymer piezoresistive hybrid system , 2012 .

[21]  R. S. Saxena,et al.  Reducing Readout Complexity of Large Resistive Sensor Arrays , 2008, IEEE Sensors Journal.

[22]  K. Jacob,et al.  Carbon nanotubes as Raman sensors of vulcanization in natural rubber , 2006 .

[23]  Raghvendra Sahai Saxena,et al.  Virtual Ground Technique for Crosstalk Suppression in Networked Resistive Sensors , 2011, IEEE Sensors Journal.

[24]  Luca Maiolo,et al.  Flexible PVDF-TrFE pyroelectric sensor driven by polysilicon thin film transistor fabricated on ultra-thin polyimide substrate , 2012 .

[25]  M. Shimojo,et al.  A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method , 2004, IEEE Sensors Journal.

[26]  M. Lima,et al.  Elastomeric Conductive Composites Based on Carbon Nanotube Forests , 2010, Advanced materials.

[27]  Peng Wang,et al.  Thin Flexible Pressure Sensor Array Based on Carbon Black/Silicone Rubber Nanocomposite , 2009, IEEE Sensors Journal.

[28]  Elgar Fleisch,et al.  Flexible-foam-based capacitive sensor arrays for object detection at low cost , 2008 .

[29]  Xuewen Wang,et al.  Silk‐Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals , 2014, Advanced materials.

[30]  R. K. Bhan,et al.  A new discrete circuit for readout of resistive sensor arrays , 2009 .

[31]  Wang Luheng,et al.  Effects of conductive phase content on critical pressure of carbon black filled silicone rubber composite , 2007 .

[32]  K. Fan,et al.  A 32 × 32 temperature and tactile sensing array using PI-copper films , 2010 .