A HYBRID OF ROUGH SETS AND GENETIC ALGORITHMS FOR SOLVING THE 0-1 MULTIDIMENSIONAL KNAPSACK PROBLEM

The multidimensional 0-1 knapsack problem (MKP) is a well-known NPhard combinatorial optimization problem. This paper uses a methodology that integrates a reduct of rough sets (RS) into the crossover operator of a genetic algorithm (GA) to solve the MKP. Two algorithms are presented in this paper; one selects the crossover points either randomly or via the reduct, whereas the other selects the crossover points solely by the reduct. The performance of these two algorithms was compared with a standard GA using test cases from the literature. According to the experimental results, this integration obtains both better quality and more clustered solutions, and could possibly improve the performance if some mechanisms are developed in the algorithm. The results justify the integration and demonstrate an alternative for improving the performance of the GA.

[1]  Günther R. Raidl,et al.  The Multidimensional Knapsack Problem: Structure and Algorithms , 2010, INFORMS J. Comput..

[2]  Zuren Feng,et al.  An ant colony optimization approach for the multidimensional knapsack problem , 2010, J. Heuristics.

[3]  Maria Grazia Speranza,et al.  Kernel search: A general heuristic for the multi-dimensional knapsack problem , 2010, Comput. Oper. Res..

[4]  Ernesto Costa,et al.  Multidimensional Knapsack Problem: A Fitness Landscape Analysis , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  H. -H. Yang,et al.  Crossover based on rough sets - a case of multidimensional knapsack problem , 2010, 2010 IEEE International Conference on Industrial Engineering and Engineering Management.

[6]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[7]  Hans Kellerer,et al.  Knapsack problems , 2004 .

[8]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[9]  H. Yang,et al.  A novel approach for crossover based on attribute reduction - a case of 0/1 knapsack problem , 2009, 2009 IEEE International Conference on Industrial Engineering and Engineering Management.

[10]  Susan H. Xu,et al.  Greedy algorithm for the general multidimensional knapsack problem , 2007, Ann. Oper. Res..

[11]  Didier El Baz,et al.  Heuristics for the 0-1 multidimensional knapsack problem , 2009, Eur. J. Oper. Res..

[12]  Lai Soon Lee,et al.  A Fuzzy Genetic Algorithm Based on Binary Encoding for Solving Multidimensional Knapsack Problems , 2012, J. Appl. Math..

[13]  Sameh Al-Shihabi,et al.  A hybrid of Nested Partition, Binary Ant System, and Linear Programming for the multidimensional knapsack problem , 2010, Comput. Oper. Res..

[14]  Didier El Baz,et al.  Solution of multidimensional knapsack problems via cooperation of dynamic programming and branch and bound , 2010 .

[15]  Dimitris Bertsimas,et al.  An Approximate Dynamic Programming Approach to Multidimensional Knapsack Problems , 2002, Manag. Sci..

[16]  S. Voß,et al.  Some Experiences On Solving Multiconstraint Zero-One Knapsack Problems With Genetic Algorithms , 1994 .

[17]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[18]  Anne L. Olsen Penalty functions and the knapsack problem , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[19]  Thomas Bäck,et al.  The zero/one multiple knapsack problem and genetic algorithms , 1994, SAC '94.

[20]  Günther R. Raidl,et al.  Empirical Analysis of Locality, Heritability and Heuristic Bias in Evolutionary Algorithms: A Case Study for the Multidimensional Knapsack Problem , 2005, Evolutionary Computation.

[21]  Arnaud Fréville,et al.  The multidimensional 0-1 knapsack problem: An overview , 2004, Eur. J. Oper. Res..

[22]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .