The Minimum Distance of Graph Codes

We study codes constructed from graphs where the code symbols are associated with the edges and the symbols connected to a given vertex are restricted to be codewords in a component code. In particular we treat such codes from bipartite expander graphs coming from Euclidean planes and other geometries. We give results on the minimum distances of the codes.

[1]  Richard E. Blahut,et al.  Algebraic codes on lines, planes, and curves , 2008 .

[2]  David Burton Elementary Number Theory , 1976 .

[3]  Ron M. Roth,et al.  Introduction to Coding Theory , 2019, Discrete Mathematics.

[4]  Yuan Zhou Introduction to Coding Theory , 2010 .

[5]  Alexander Barg,et al.  Error exponents of expander codes , 2002, IEEE Trans. Inf. Theory.

[6]  Walter Feit,et al.  The nonexistence of certain generalized polygons , 1964 .

[7]  Tom Høholdt,et al.  Graph Codes with Reed-Solomon Component Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[8]  Daniel A. Spielman,et al.  Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[9]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[10]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[11]  Robert Michael Tanner,et al.  Minimum-distance bounds by graph analysis , 2001, IEEE Trans. Inf. Theory.

[12]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[13]  Heeralal Janwa,et al.  On Tanner Codes: Minimum Distance and Decoding , 2003, Applicable Algebra in Engineering, Communication and Computing.

[14]  H. Mattson,et al.  The mathematical theory of coding , 1976, Proceedings of the IEEE.

[15]  Ron M. Roth,et al.  Improved Nearly-MDS Expander Codes , 2006, IEEE Transactions on Information Theory.

[16]  Giuliana P. Davidoff,et al.  Elementary number theory, group theory, and Ramanujan graphs , 2003 .