ParaStieltjes: Parallel computation of Gauss quadrature rules using a Parareal‐like approach for the Stieltjes procedure

Present Address 2-4 rue du Lièvre, 1211 Genève 4, Suisse Summary The computation of Gauss quadrature rules for arbitrary weight functions using the Stieltjes algorithm is a purely sequential process, and the computational cost significantly increases when high accuracy is required. PARASTIELTJES is a new algorithm to compute the recurrence coefficients of the associated orthogonal polynomials in parallel, from which the nodes and weights of the quadrature rule can then be obtained. PARASTIELTJES is based on the time-parallel PARAREAL algorithm for solving time dependent problems, and thus enlarges the applicability of this time parallel technique to a further, new area of scientific computing. We study PARASTIELTJES numerically for different weight functions, and show that substantial theoretical speedup can be obtained when high accuracy is needed. We also present an asymptotic approximation for the node and weight distribution of Gauss quadrature rules, which can be used effectively in PARASTIELTJES.

[1]  J. Weideman,et al.  Spectral Methods Based on Nonclassical Orthogonal Polynomials , 1999 .

[2]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[3]  Martin J. Gander,et al.  Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer , 2001 .

[4]  W. Gautschi Orthogonal polynomials: applications and computation , 1996, Acta Numerica.

[5]  Martin J. Gander,et al.  50 Years of Time Parallel Time Integration , 2015 .

[6]  Daniel Ruprecht Shared Memory Pipelined Parareal , 2017, Euro-Par.

[7]  W. Gautschi FOR GAUSS-TYPE QUADRATURE RULES , 2006 .

[8]  G. Golub,et al.  Matrices, Moments and Quadrature with Applications , 2009 .

[9]  GautschiWalter On Generating Orthogonal Polynomials , 1982 .

[10]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[11]  WALTER GAUTSCHI Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.

[12]  George Em Karniadakis,et al.  Adaptive multi-element polynomial chaos with discrete measure , 2015 .

[13]  Eric Aubanel Scheduling of tasks in the parareal algorithm , 2011, Parallel Comput..

[14]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[15]  Martin J. Gander,et al.  Analysis of the Parareal Algorithm Applied to Hyperbolic Problems Using Characteristics , 2008 .

[16]  Martin J. Gander,et al.  Scientific Computing - An Introduction using Maple and MATLAB , 2014 .

[17]  W. Gautschi Construction of Gauss-Christoffel quadrature formulas , 1968 .

[18]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[19]  D. Baye,et al.  Lagrange meshes from nonclassical orthogonal polynomials. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Jacob B. Schroder Parallelizing Over Artificial Neural Network Training Runs with Multigrid , 2017, ArXiv.

[21]  Robert D. Falgout,et al.  A parallel multigrid reduction in time method for power systems , 2016, 2016 IEEE Power and Energy Society General Meeting (PESGM).

[22]  P. Iseger NUMERICAL TRANSFORM INVERSION USING GAUSSIAN QUADRATURE , 2005, Probability in the Engineering and Informational Sciences.

[23]  Paul Neval,et al.  Ge´za Freud, orthogonal polynomials and Christoffel functions. A case study , 1986 .

[24]  Serge Gratton,et al.  Time-parallel simulation of the decay of homogeneous turbulence using Parareal with spatial coarsening , 2018, Comput. Vis. Sci..

[25]  Sabine Van Huffel The power of tensor decompositions in smart patient monitoring , 2015 .

[26]  Martin J. Gander,et al.  Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .

[27]  Yvon Maday,et al.  A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations , 2005 .

[28]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[29]  Sebastian Götschel,et al.  Parallel-in-Time for Parabolic Optimal Control Problems Using PFASST , 2017 .

[30]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[31]  W. Gautschi On Generating Orthogonal Polynomials , 1982 .