ParaStieltjes: Parallel computation of Gauss quadrature rules using a Parareal‐like approach for the Stieltjes procedure
暂无分享,去创建一个
[1] J. Weideman,et al. Spectral Methods Based on Nonclassical Orthogonal Polynomials , 1999 .
[2] J. Lions,et al. Résolution d'EDP par un schéma en temps « pararéel » , 2001 .
[3] Martin J. Gander,et al. Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer , 2001 .
[4] W. Gautschi. Orthogonal polynomials: applications and computation , 1996, Acta Numerica.
[5] Martin J. Gander,et al. 50 Years of Time Parallel Time Integration , 2015 .
[6] Daniel Ruprecht. Shared Memory Pipelined Parareal , 2017, Euro-Par.
[7] W. Gautschi. FOR GAUSS-TYPE QUADRATURE RULES , 2006 .
[8] G. Golub,et al. Matrices, Moments and Quadrature with Applications , 2009 .
[9] GautschiWalter. On Generating Orthogonal Polynomials , 1982 .
[10] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[11] WALTER GAUTSCHI. Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.
[12] George Em Karniadakis,et al. Adaptive multi-element polynomial chaos with discrete measure , 2015 .
[13] Eric Aubanel. Scheduling of tasks in the parareal algorithm , 2011, Parallel Comput..
[14] Gene H. Golub,et al. Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.
[15] Martin J. Gander,et al. Analysis of the Parareal Algorithm Applied to Hyperbolic Problems Using Characteristics , 2008 .
[16] Martin J. Gander,et al. Scientific Computing - An Introduction using Maple and MATLAB , 2014 .
[17] W. Gautschi. Construction of Gauss-Christoffel quadrature formulas , 1968 .
[18] Martin J. Gander,et al. Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..
[19] D. Baye,et al. Lagrange meshes from nonclassical orthogonal polynomials. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[20] Jacob B. Schroder. Parallelizing Over Artificial Neural Network Training Runs with Multigrid , 2017, ArXiv.
[21] Robert D. Falgout,et al. A parallel multigrid reduction in time method for power systems , 2016, 2016 IEEE Power and Energy Society General Meeting (PESGM).
[22] P. Iseger. NUMERICAL TRANSFORM INVERSION USING GAUSSIAN QUADRATURE , 2005, Probability in the Engineering and Informational Sciences.
[23] Paul Neval,et al. Ge´za Freud, orthogonal polynomials and Christoffel functions. A case study , 1986 .
[24] Serge Gratton,et al. Time-parallel simulation of the decay of homogeneous turbulence using Parareal with spatial coarsening , 2018, Comput. Vis. Sci..
[25] Sabine Van Huffel. The power of tensor decompositions in smart patient monitoring , 2015 .
[26] Martin J. Gander,et al. Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .
[27] Yvon Maday,et al. A Parareal in Time Semi-implicit Approximation of the Navier-Stokes Equations , 2005 .
[28] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[29] Sebastian Götschel,et al. Parallel-in-Time for Parabolic Optimal Control Problems Using PFASST , 2017 .
[30] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[31] W. Gautschi. On Generating Orthogonal Polynomials , 1982 .