Microfluidic integrated optoelectronic tweezers for single-cell preparation and analysis.

We report a novel microfluidic integrated optoelectronic tweezers (OET) platform for single-cell sample preparation and analysis. Integration of OET and microfluidics is achieved by embedding single-wall carbon nanotube (SWNT) electrodes into multilayer PDMS structures. This integrated platform allows users to selectively pick up individual cells from a population with light beams based on their optical signatures such as size, shape, and fluorescence, and transport them into isolated chambers using light induced dielectrophoretic forces. Isolated cells can be encapsulated into nanoliter liquid plugs and transported out of the platform for downstream molecule analysis using standard commercial instruments.

[1]  D. Marshall,et al.  Microfluidics for single cell analysis. , 2012, Current opinion in biotechnology.

[2]  R. Zare,et al.  Microfluidic platforms for single-cell analysis. , 2010, Annual review of biomedical engineering.

[3]  Hsan-Yin Hsu,et al.  Parallel single-cell light-induced electroporation and dielectrophoretic manipulation. , 2009, Lab on a chip.

[4]  Peidong Yang,et al.  Dynamic manipulation and separation of individual semiconducting and metallic nanowires. , 2008, Nature photonics.

[5]  J. Voldman,et al.  Intuitive, image-based cell sorting using optofluidic cell sorting. , 2007, Analytical chemistry.

[6]  T. Huang,et al.  Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). , 2009, Lab on a chip.

[7]  Sheraz Kalim,et al.  A light-induced dielectrophoretic droplet manipulation platform. , 2009, Lab on a chip.

[8]  Unyoung Kim,et al.  Multitarget magnetic activated cell sorter , 2008, Proceedings of the National Academy of Sciences.

[9]  Gwo-Bin Lee,et al.  Optically induced flow cytometry for continuous microparticle counting and sorting. , 2008, Biosensors & bioelectronics.

[10]  Arash Jamshidi,et al.  Parallel trapping of multiwalled carbon nanotubes with optoelectronic tweezers. , 2009, Applied physics letters.

[11]  Hsan-Yin Hsu,et al.  Antifouling coatings for optoelectronic tweezers. , 2009, Lab on a chip.

[12]  Wei Wang,et al.  Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices , 2010 .

[13]  Stephen R Quake,et al.  Microfluidic single-cell mRNA isolation and analysis. , 2006, Analytical chemistry.

[14]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[15]  Steven L Neale,et al.  Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media. , 2010, Lab on a chip.

[16]  W. Marsden I and J , 2012 .

[17]  Cheng-Hsien Liu,et al.  Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis. , 2010, Optics letters.

[18]  Aydogan Ozcan,et al.  Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip. , 2013, Lab on a chip.

[19]  M.C. Wu,et al.  Light-Actuated AC Electroosmosis for Nanoparticle Manipulation , 2008, Journal of Microelectromechanical Systems.

[20]  Steven L Neale,et al.  Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers. , 2010, Lab on a chip.

[21]  Clive R Taylor,et al.  Microfluidic devices for investigating stem cell gene regulation via single-cell analysis. , 2008, Current medicinal chemistry.

[22]  Dong Sun,et al.  Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. , 2011, Lab on a chip.

[23]  Wenfeng Liang,et al.  Self-Rotation of Cells in an Irrotational AC E-Field in an Opto-Electrokinetics Chip , 2013, PloS one.

[24]  Andrew G. Glen,et al.  APPL , 2001 .

[25]  Hyundoo Hwang,et al.  Measurement of molecular diffusion based on optoelectrofluidic fluorescence microscopy. , 2009, Analytical chemistry.

[26]  Stephen R Quake,et al.  Genomic analysis at the single-cell level. , 2011, Annual review of genetics.

[27]  Axel Scherer,et al.  A microfluidic processor for gene expression profiling of single human embryonic stem cells. , 2008, Lab on a chip.

[28]  Ming C. Wu,et al.  Heterogeneous integration of InGaAsP microdisk laser on a silicon platform using optofluidic assembly , 2009 .

[29]  Michael A. Teitell,et al.  Floating electrode optoelectronic tweezers: Light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium. , 2008, Applied physics letters.

[30]  Pei-Yu Chiou,et al.  A novel optoelectronic tweezer using light induced dielectrophoresis , 2003, 2003 IEEE/LEOS International Conference on Optical MEMS (Cat. No.03EX682).

[31]  Paul H. Bessette,et al.  Marker-specific sorting of rare cells using dielectrophoresis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M.C. Wu,et al.  Dynamic Cell and Microparticle Control via Optoelectronic Tweezers , 2007, Journal of Microelectromechanical Systems.

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  I-Kao Chiang,et al.  On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves , 2012, Proceedings of the National Academy of Sciences.

[35]  Electrodes for Microfluidic Integrated Optoelectronic Tweezers , 2011 .