Le contrôle automatique du flux lumineux dans l'oeil composé des Diptères

In the compound eye of the fly Musca, tiny pigment granules move within the cytoplasm of receptor cells Nos. 1–6 and cluster along the wall of the rhabdomeres under light adaptation, thus attenuating the light flux to which the visual pigment is exposed (Kirschfeld and Franceschini, 1969). Two recently developed optical methods (the neutralization of the cornea and the deep pseudopupil) combined with antidromic and orthodromic illumination of the eye (Fig. 1) make it possible to analyse the properties of the mechanism at the level of the single cell, in live and intact insects (Drosophila and Musca). The mechanism is shown to be an efficient attenuator in the spectral range (blue-green) where cells Nos. 1–6 have been reported to be maximally sensitive (Figs. 4c and d, 5b and 11b). In spite of the fact that the granules do not penetrate into the rhabdomere, the attenuation spectrum they bring about closely matches the absorption spectrum of the substance of which they are composed (ommochrome pigment, dotted curve in Fig. 11b). The dramatic increase in reflectance of the receptors after light adaptation (Figs. 3, 4b, 5a and 11a) can be explained as a mere by-product of the high absorption index of the ommochrome pigment, especially if one takes into account the phenomenon of anomalous dispersion (Chapter 8). The vivid green or yellow colour of the rhabdomeres would thus have a physical origin comparable to a metallic glint. Contrasting with the lens eye in which the pupillary mechanism is a common attenuator for both receptor types (rods and cones), the compound eye of higher Diptera is equiped with two types of “pupils” adapted respectively to both visual subsystems. A scotopic pupil is present in each of the six cells (Nos. 1–6) whose signals are gathered in a common cartridge of the first optic ganglion. This pupil comes into play at a moderate luminance (0,3 cd/m2 in Drosophila; 3 to 10 cd/m2 in Musca. Figs 13, 14, 15, 16). A photopic pupil is present in the central cell No. 7 whose signal reaches one column of the second optic ganglion. Attenuating the light flux for both central cells 7 and 8, the photopic pupil has its threshold about two decades higher than the scotopic pupil, just at the point where the latter reaches saturation (Fig. 3b, e-State II of Figs. 6b and 15). The photopic pupil itself saturates at a luminance one to two decades higher still (Fig. 3c, f=State III of Figs. 6c and 15). The two-decades-shift in threshold of these pupil-mechanisms supports the view that receptors 1–6 are a scotopic subsystem, receptors 7 and 8 a photopic subsystem of the dipteran eye. The luminance-threshold of the scotopic pupil (as determined with the apparatus described in Fig. 2) appears to be located at least 3.5 decades (Drosophila) or even 5 decades (Musca) higher than the absolute threshold of movement perception (Fig. 16). After a long period (1 hr) of darkness a light step of high intensity can close the scotopic pupil within about 10 sec (time constant τ≃2 sec as in Fig. 9) and the photopic pupil within no less than 30–60 sec. Some mutants of Drosophila possess only a scotopic pupil (wα, Figs. 4 and 5) whereas ommochrome deficient mutants lack both types of pupil (v, cn, see Fig. 7c, d). Comparable reflectance changes, accomplished within about 60 sec of light adaptation, are described for two insects having fused rhabdomes: the bee and the locust (Fig. 17).

[1]  K. -. Skrzipek,et al.  Die Anordnung der Ommatidien in der Retina der Biene (Apis mellifica L.) , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[2]  M. A. Ali [Retinomotor response: characteristics and mechanisms]. , 1971, Vision research.

[3]  H. Autrum,et al.  Die Feinstruktur im Auge der Biene bei Hell- und Dunkeladaptation , 1972, Journal of comparative physiology.

[4]  I. Ziegler,et al.  Genetic Aspects of Ommochrome and Pterin Pigments , 1961 .

[5]  G. D. Bernard,et al.  Butterfly glow. , 1968, Journal of ultrastructure research.

[6]  R. Menzel The Fine Structure of the Compound Eye of Formica polyctena — Functional Morphology of a Hymenopterean Eye , 1972 .

[7]  C. H. Waddington,et al.  The ultra-structure of the developing eye of Drosophila , 1960, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  D. Cosens,et al.  Light elicited isolation of the complementary visual input systems in white-eye Drosophila. , 1975, Journal of insect physiology.

[9]  Allan W. Snyder,et al.  Angular Sensitivity of Lens-Photoreceptor Systems , 1975 .

[10]  P. Streck Der Einfluß des Schirmpigmentes auf das Sehfeld einzelner Sehzellen der Fliege Calliphora erythrocephala Meig. , 1972, Zeitschrift für vergleichende Physiologie.

[11]  R. Butler,et al.  The anatomy of the compound eye ofPeriplaneta americana L. , 2004, Journal of comparative physiology.

[12]  D. Nolte,et al.  The pigment granules in the compound eyes of Drosophila , 1961, Heredity.

[13]  K. Kirschfeld,et al.  Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca , 1969, Kybernetik.

[14]  D. Stavenga,et al.  Visual adaptation in butterflies , 1975, Nature.

[15]  G. Rosner Adaptation und Photoregeneration im Fliegenauge , 2005, Journal of comparative physiology.

[16]  Joachim Hornung,et al.  Über den statischen Regelfaktor der menschlichen Pupille , 1966, Kybernetik.

[17]  Structure of photoreceptors ofpolystoma integerrimum (platyhelminths, monogenea) , 1978, Zoomorphologie.

[18]  M. I. Mote,et al.  NEURAL CONTROL OF MIGRATION OF PROXIMAL SCREENING PIGMENT BY RETINULAR CELLS OF THE SWIMMING CRAB CALLINECTES SAPIDUS , 1973 .

[19]  Martin Heisenberg,et al.  Comparative behavioral studies on two visual mutants ofDrosophila , 1972, Journal of comparative physiology.

[20]  H. Kinosita ELECTROPHORETIC THEORY OF PIGMENT MIGRATION WITHIN FISH MELANOPHORE , 1963, Annals of the New York Academy of Sciences.

[21]  K. Kirschfeld,et al.  Die projektion der optischen umwelt auf das raster der rhabdomere im komplexauge von Musca , 2004, Experimental Brain Research.

[22]  W. Pak,et al.  Drosophila rhodopsin: photochemistry, extraction and differences in the norp AP12 phototransduction mutant. , 1974, Biochemical and biophysical research communications.

[23]  G A Horridge,et al.  Movement of palisade in locust retinula cells when illuminated. , 1965, The Quarterly journal of microscopical science.

[24]  D. Stavenga,et al.  Photopigment conversions expressed in pupil mechanism of blowfly visual sense cells , 1975, Nature.

[25]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[26]  R. Wehner,et al.  Fine structure of light‐ and dark‐adapted eyes of desert ants, Cataglyphis bicolor (Formicidae, Hymenoptera) , 1973, Journal of morphology.

[27]  F. G. Varela,et al.  Fine structure of the visual system of the honeybee (Apis mellifera). I. The retina. , 1969, Journal of ultrastructure research.

[28]  G YASUZUMI,et al.  Submicroscopic structure of the compound eye as revealed by electron microscopy. , 1958, Journal of ultrastructure research.

[29]  G. Horridge,et al.  The electrophysiology of the retina ofPeriplaneta americana L. , 1973, Journal of comparative physiology.

[30]  Boschek Cb On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .

[31]  R. Menzel,et al.  Pigment movement during light and chromatic adaptation in the retinula cells ofFormica polyctena (Hymenoptera, Formicidae) , 1973, Journal of comparative physiology.

[32]  N. Daw,et al.  Pigment Migration and Adaptation in the Eye of the Squid, Loligo pealei , 1974, The Journal of general physiology.

[33]  H. Fuge Die Pigmentbildung im Auge von Drosophila melanogaster und ihre Beeinflussung durch den white+-Locus , 1967, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[34]  G. Horridge,et al.  The electrophysiology of the retina ofPeriplaneta americana L. , 2004, Journal of comparative physiology.

[35]  W. Pak,et al.  Isolation of light-induced response of the central retinula cells from the electroretinogram ofDrosophila , 1975, Journal of comparative physiology.

[36]  Martin Wilson,et al.  Angular sensitivity of light and dark adapted locust retinula cells , 1975, Journal of comparative physiology.

[37]  W. Stark,et al.  Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments inDrosophila , 1975, Journal of comparative physiology.

[38]  G. Parker The Movements of the Retinal Pigment , 1932 .

[39]  M. Perry,et al.  The fine structure of the eye of a visual mutant, A-type of Drosophila melanogaster. , 1972, Journal of insect physiology.

[40]  D. Stavenga Waveguide modes and refractive index in photoreceptors of invertebrates , 1975, Vision Research.

[41]  D. Briscoe,et al.  A switch phenomenon in the compound eye of the white-eyed mutant of Drosophila melanogaster , 1972 .

[42]  J. W. Kuiper,et al.  The optics of the compound eye , 1962 .

[43]  N. Franceschini,et al.  Etude optique in vivo des éléments photorécepteurs dans l'œil composé de Drosophila , 2004, Kybernetik.

[44]  G. Seitz Nachweis einer Pupillenreaktion im Auge der Schmeißfliege , 1970, Zeitschrift für vergleichende Physiologie.

[45]  E. Hadorn,et al.  Properties of Mutants of Drosophila Melanogaster and Changes During Development as Revealed by Paper Chromatography. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[46]  L. Heimer,et al.  Impairment of mating behavior in male rats following lesions in the preoptic-anterior hypothalamic continuum , 1967 .

[47]  O. J. Grundler Elektronenmikroskopische Untersuchungen am Auge der Honig biene (Apis mellifica). I. Untersuchungen zur Morphologie und Anordnung der neun Retinulazellen in Ommatidien versc hiedenerAugenbereiche und zur Perzeption linear polarisier ten Lichtes , 1974 .

[48]  D. Vowles The receptive fields of cells in the retina of the housefly (Musca domestica) , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[49]  W. H. Fahrenbach The morphology of the eyes of Limulus , 1968, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[50]  F. G. Varela,et al.  Fine structure of the visual system of the honeybee (Apis mellifera). I. The retina. , 1969, Journal of ultrastructure research.

[51]  Jesus del Poetillo Beziehungen zwischen den Öffnungswinkeln der Ommatidien, Krümmung und Gestalt der Insektenaugen und ihrer funktionellen Aufgabe , 1936 .

[52]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[53]  F. W. Campbell,et al.  The role of the pupil light reflex in aiding adaptation to the dark , 1975, Vision Research.

[54]  O. Trujillo-Cenóz,et al.  Compound eye of dipterans: anatomical basis for integration--an electron microscope study. , 1966, Journal of ultrastructure research.

[55]  Giulio Fermi,et al.  Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.

[56]  K. Porter,et al.  Microtubules and pigment migration in the melanophores ofFundulus heteroclitus L. , 1966, Protoplasma.

[57]  R. Butler The identification and mapping of spectral cell types in the retina of Periplaneta americana , 1971, Zeitschrift für vergleichende Physiologie.

[58]  N. Franceschini,et al.  Pupil and Pseudopupil in the Compound Eye of Drosophila , 1972 .

[59]  J. M. Palmer Inhibition of oxidative phosphorylation and dinitrophenol stimulated ATPase by bathophenanthroline , 1970, FEBS letters.

[60]  D. Stavenga,et al.  Photopigment conversions expressed in receptor potential and membrane resistance of blowfly visual sense cells , 1975, Nature.

[61]  H. Eckert Die spektrale Empfindlichkeit des Komplexauges von Musca (Bestimmung aus Messungen der optomotorischen reaktion) , 1971, Kybernetik.

[62]  Jaroslav Král,et al.  A note on grammars with regular restrictions , 1973, Kybernetika.

[63]  W. H. Miller,et al.  Pigment granule movement in Limulus photoreceptors. , 1974, Investigative ophthalmology.

[64]  G. K. Strother,et al.  In situ absorption spectra of Drosophila melanogaster visual screening pigments. , 1972, Vision research.

[65]  Peter Kunze,et al.  Untersuchung des Bewegungssehens fixiert fliegender Bienen , 1961, Zeitschrift für vergleichende Physiologie.

[66]  K. Hamdorf,et al.  Photoreconversion of Invertebrate Visual Pigments , 1972 .

[67]  Dean O. Smith Temporal characteristics of efferent neuron discharge during muscle contraction in the crayfish claw , 1975, Journal of comparative physiology.

[68]  Light transmission and its regulation in the compound eye. , 1967 .

[69]  G. Horridge,et al.  The optical function of changes in the medium surrounding the cockroach rhabdom , 1972, Journal of Comparative Physiology.

[70]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[71]  Randolf Menzel,et al.  Änderungen der Feinstruktur im Komplexauge von Formica polyctena bei der Helladaptation / Ultrastructural Variations during Light Adaptation in the Complex Eye of Formica polyctena , 1971 .

[72]  T. Goldsmith FINE STRUCTURE OF THE RETINULAE IN THE COMPOUND EYE OF THE HONEY-BEE , 1962, The Journal of cell biology.

[73]  Hendrik Eckert,et al.  Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L , 1973, Kybernetik.

[74]  W. H. Miller,et al.  FINE STRUCTURE OF SOME INVERTEBRATE PHOTORECEPTORS , 1958, Annals of the New York Academy of Sciences.

[75]  O. Kuhn Die facettenaugen der landwanzen und zikaden , 1926, Zeitschrift für Morphologie und Ökologie der Tiere.

[76]  G. A. Horridge,et al.  Electrophysiological investigation of the optics of the locust retina , 1967, Zeitschrift für vergleichende Physiologie.

[77]  K. Kirschfeld,et al.  Optische Eigenschaften der Ommatidien im Komplexauge von Musca , 1968, Kybernetik.

[78]  G. Bruce Boschek,et al.  On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[79]  N. Franceschini,et al.  Les phénomènes de pseudopupille dans l'œil composé deDrosophila , 1971, Kybernetik.

[80]  J. Scholes The electrical responses of the retinal receptors and the lamina in the visual system of the fly musca , 1969, Kybernetik.