Surface Construction of a High-Ionic-Conductivity Buffering Layer on a LiNi0.6Co0.2Mn0.2O2 Cathode for Stable All-Solid-State Sulfide-Based Batteries

[1]  J. Tu,et al.  Stabilizing the interphase between Li and Argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries , 2022, Nano Energy.

[2]  Liquan Chen,et al.  5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries , 2021, Nano Energy.

[3]  S. Cheng,et al.  LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures , 2021 .

[4]  J. Tu,et al.  Ultrafast Synthesis of I‐Rich Lithium Argyrodite Glass–Ceramic Electrolyte with High Ionic Conductivity , 2021, Advanced materials.

[5]  J. Tu,et al.  Single-Crystal-Layered Ni-Rich Oxide Modified by Phosphate Coating Boosting Interfacial Stability of Li10 SnP2 S12 -Based All-Solid-State Li Batteries. , 2021, Small.

[6]  J. Tu,et al.  In situ formation of a Li3N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping , 2021 .

[7]  Felix H. Richter,et al.  Influence of Crystallinity of Lithium Thiophosphate Solid Electrolytes on the Performance of Solid‐State Batteries , 2021, Advanced Energy Materials.

[8]  Felix H. Richter,et al.  Editors’ Choice—Quantifying the Impact of Charge Transport Bottlenecks in Composite Cathodes of All-Solid-State Batteries , 2021 .

[9]  Jaephil Cho,et al.  Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries , 2021, Nature Energy.

[10]  Yong Yang,et al.  Electrochemo‐Mechanical Effects on Structural Integrity of Ni‐Rich Cathodes with Different Microstructures in All Solid‐State Batteries , 2021, Advanced Energy Materials.

[11]  Bingbing Chen,et al.  In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries , 2020, Nature Communications.

[12]  Erik A. Wu,et al.  Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. , 2020, Chemical reviews.

[13]  Ellen Ivers-Tiffée,et al.  Benchmarking the performance of all-solid-state lithium batteries , 2020 .

[14]  L. Archer,et al.  Designing solid-state electrolytes for safe, energy-dense batteries , 2020, Nature Reviews Materials.

[15]  Dawei Song,et al.  LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery , 2020, Journal of Energy Chemistry.

[16]  Erik A. Wu,et al.  Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries. , 2019, ACS applied materials & interfaces.

[17]  Hongli Zhu,et al.  Sulfide‐Based Solid‐State Electrolytes: Synthesis, Stability, and Potential for All‐Solid‐State Batteries , 2019, Advanced materials.

[18]  Christian Masquelier,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[19]  Stephan Weise,et al.  Present and Future , 2019, A Fossil History of Southern African Land Mammals.

[20]  M. Wagemaker,et al.  Space-Charge Layers in All-Solid-State Batteries; Important or Negligible? , 2018, ACS applied energy materials.

[21]  K. Tadanaga,et al.  Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery , 2018, Journal of Sol-Gel Science and Technology.

[22]  Wei Luo,et al.  Promises, Challenges, and Recent Progress of Inorganic Solid‐State Electrolytes for All‐Solid‐State Lithium Batteries , 2018, Advanced materials.

[23]  M. Wagemaker,et al.  Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface , 2017, Nature Communications.

[24]  T. Leichtweiss,et al.  The Detrimental Effects of Carbon Additives in Li10GeP2S12-Based Solid-State Batteries. , 2017, ACS applied materials & interfaces.

[25]  Li Lu,et al.  Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance , 2017 .

[26]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[27]  Yizhou Zhu,et al.  First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries , 2016 .

[28]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[29]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[30]  Haomin Chen,et al.  Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. , 2015, Physical chemistry chemical physics : PCCP.

[31]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[32]  M. Armand,et al.  Building better batteries , 2008, Nature.

[33]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[34]  J. Tu,et al.  Recent progress of sulfide electrolytes for all-solid-state lithium batteries , 2022, Energy Materials.