General Iteration graphs and Boolean automata circuits

This article is set in the field of regulation networks modeled by discrete dynamical systems. It focuses on Boolean automata networks. In such networks, there are many ways to update the states of every element. When this is done deterministically, at each time step of a discretised time flow and according to a predefined order, we say that the network is updated according to a block-sequential update schedule (blocks of elements are updated sequentially while, within each block, the elements are updated synchronously). Many studies, for the sake of simplicity and with some biologically motivated reasons, have concentrated on networks updated with one particular block-sequential update schedule (more often the synchronous/parallel update schedule or sequential update schedules). The aim of this paper is to give an argument formally proven and inspired by biological considerations in favour of the fact that the choice of a particular update schedule does not matter so much in terms of the possible and likely dynamical behaviours that networks may display.

[1]  Thomas Mestl,et al.  FEEDBACK LOOPS, STABILITY AND MULTISTATIONARITY IN DYNAMICAL SYSTEMS , 1995 .

[2]  J. Gouzé Positive and Negative Circuits in Dynamical Systems , 1998 .

[3]  René Thomas On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations , 1981 .

[4]  R. Thomas,et al.  A new necessary condition on interaction graphs for multistationarity. , 2007, Journal of Theoretical Biology.

[5]  Adrien Richard,et al.  Negative circuits and sustained oscillations in asynchronous automata networks , 2009, Adv. Appl. Math..

[6]  J. Demongeot,et al.  Positive and negative feedback: striking a balance between necessary antagonists. , 2002, Journal of theoretical biology.

[7]  Denis Thieffry,et al.  Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework , 2008, Adv. Appl. Math..

[8]  S. Sené Influence des conditions de bord dans les réseaux d'automates booléens à seuil et application à la biologie , 2008 .

[9]  Denis Thieffry,et al.  A description of dynamical graphs associated to elementary regulatory circuits , 2003, ECCB.

[10]  El Houssine Snoussi Necessary Conditions for Multistationarity and Stable Periodicity , 1998 .

[11]  E. Álvarez-Buylla,et al.  Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. , 1998, Journal of theoretical biology.

[12]  Eric Goles Ch.,et al.  Comparison between parallel and serial dynamics of Boolean networks , 2008, Theor. Comput. Sci..

[13]  Eric Goles Ch.,et al.  Block-sequential update schedules and Boolean automata circuits , 2010, Automata.

[14]  Eric Goles Ch.,et al.  On the robustness of update schedules in Boolean networks , 2009, Biosyst..

[15]  A. Bourgougnon Comptes Rendus de l'Académie des Sciences. , 1879 .

[16]  Adrien Richard,et al.  Necessary conditions for multistationarity in discrete dynamical systems , 2007, Discret. Appl. Math..

[17]  Adrien Elena,et al.  Robustesse des réseaux d'automates booléens à seuil aux modes d'itération. Application à la modélisation des réseaux de régulation génétique. (Robustness of threshold boolean automata networks to iteration modes. Application to genetic regulation network modelling) , 2009 .

[18]  Christophe Soulé,et al.  Mathematical approaches to differentiation and gene regulation. , 2005, Comptes rendus biologies.

[19]  J. Demongeot,et al.  Robustness in Regulatory Networks: A Multi-Disciplinary Approach , 2008, Acta biotheoretica.

[20]  J. Demongeot,et al.  On the number of attractors of Boolean automata circuits , 2009 .