Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization
暂无分享,去创建一个
[1] Hiroshi Yabe,et al. Conjugate gradient methods based on secant conditions that generate descent search directions for unconstrained optimization , 2012, J. Comput. Appl. Math..
[2] Bo-Shi Tian,et al. Global convergence of some modified PRP nonlinear conjugate gradient methods , 2011, Optim. Lett..
[3] Ya-Xiang Yuan,et al. Optimization Theory and Methods: Nonlinear Programming , 2010 .
[4] Neculai Andrei,et al. A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization , 2008, Appl. Math. Lett..
[5] Li Zhang,et al. Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search , 2006, Numerische Mathematik.
[6] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[7] Gonglin Yuan,et al. Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems , 2009, Optim. Lett..
[8] Ya-Xiang Yuan,et al. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..
[9] Neculai Andrei,et al. New accelerated conjugate gradient algorithms as a modification of Dai-Yuan's computational scheme for unconstrained optimization , 2010, J. Comput. Appl. Math..
[10] Li Zhang,et al. A new globalization technique for nonlinear conjugate gradient methods for nonconvex minimization , 2011, Appl. Math. Comput..
[11] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[12] W. Hager,et al. A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .
[13] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[14] Jie Sun,et al. Global convergence of a two-parameter family of conjugate gradient methods without line search , 2002 .
[15] C. Storey,et al. Efficient generalized conjugate gradient algorithms, part 1: Theory , 1991 .
[16] Gaohang Yu,et al. Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property , 2008 .
[17] Wufan Chen,et al. Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization , 2008, Optim. Methods Softw..
[18] R. Fletcher. Practical Methods of Optimization , 1988 .
[19] Zhifeng Dai,et al. A modified CG-DESCENT method for unconstrained optimization , 2011, J. Comput. Appl. Math..
[20] Hiroshi Yabe,et al. A Three-Term Conjugate Gradient Method with Sufficient Descent Property for Unconstrained Optimization , 2011, SIAM J. Optim..
[21] W. Cheng. A Two-Term PRP-Based Descent Method , 2007 .
[22] Ya-Xiang Yuan,et al. A three-parameter family of nonlinear conjugate gradient methods , 2001, Math. Comput..
[23] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[24] Yuhong Dai. Nonlinear Conjugate Gradient Methods , 2011 .
[25] Nicholas I. M. Gould,et al. CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.
[26] Nicholas I. M. Gould,et al. CUTE: constrained and unconstrained testing environment , 1995, TOMS.
[27] L. Liao,et al. New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods , 2001 .
[28] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[29] Hiroshi Yabe,et al. Globally Convergent Three-Term Conjugate Gradient Methods that Use Secant Conditions and Generate Descent Search Directions for Unconstrained Optimization , 2011, Journal of Optimization Theory and Applications.
[30] Min Li,et al. A sufficient descent LS conjugate gradient method for unconstrained optimization problems , 2011, Appl. Math. Comput..