The role of faceting and elongation on the magnetic anisotropy of magnetite FeばOぱ nanocrystals

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

[1]  J. D. Alzate-Cardona,et al.  Optimal phase space sampling for Monte Carlo simulations of Heisenberg spin systems , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  S. Veintemillas-Verdaguer,et al.  Design strategies for shape‐controlled magnetic iron oxide nanoparticles , 2019, Advanced drug delivery reviews.

[3]  S. Duane,et al.  Monte Carlo Simulations , 2018, Collider Physics.

[4]  D. Garanin Effective anisotropy due to the surface of magnetic nanoparticles , 2018, Physical Review B.

[5]  D. Garanin Uniform and nonuniform thermal switching of magnetic particles , 2018, Physical Review B.

[6]  Samaneh Mesbahi-Vasey,et al.  Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles , 2018, Scientific Reports.

[7]  Yongbing Xu,et al.  Enhancement of intrinsic magnetic damping in defect-free epitaxial Fe3O4 thin films , 2017, Applied Physics Letters.

[8]  Q. Ramasse,et al.  Origin of reduced magnetization and domain formation in small magnetite nanoparticles , 2017, Scientific Reports.

[9]  G. Parkinson Iron oxide surfaces , 2016, 1602.06774.

[10]  G. van der Laan,et al.  Inter and intra macro-cell model for point dipole–dipole energy calculations , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  Olivier Sandre,et al.  Fundamentals and advances in magnetic hyperthermia , 2015, Applied Physics Reviews.

[12]  Jaya Pal,et al.  Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. , 2015, Nanoscale.

[13]  M. O. A. Ellis,et al.  The Landau–Lifshitz equation in atomistic models , 2015, 1505.07367.

[14]  Chengjie Sun,et al.  Anisotropic Shaped Iron Oxide Nanostructures: Controlled Synthesis and Proton Relaxation Shortening Effects , 2015 .

[15]  I. García-Rubio,et al.  Anisotropy of bullet-shaped magnetite nanoparticles in the magnetotactic bacteria Desulfovibrio magneticus sp. Strain RS-1. , 2015, Biophysical journal.

[16]  O. Hovorka,et al.  Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles , 2014, Scientific Reports.

[17]  S. Majetich,et al.  Magnetic Fluctuations in Individual Superparamagnetic Particles , 2014, IEEE Transactions on Magnetics.

[18]  Rudolf Hergt,et al.  Magnetic particle hyperthermia—a promising tumour therapy? , 2014, Nanotechnology.

[19]  R. Chantrell,et al.  Quantitative simulation of temperature-dependent magnetization dynamics and equilibrium properties of elemental ferromagnets , 2014, 1409.7397.

[20]  R. Tan,et al.  Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: Influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power , 2014, 1407.2737.

[21]  E. Alphandéry Applications of Magnetosomes Synthesized by Magnetotactic Bacteria in Medicine , 2014, Front. Bioeng. Biotechnol..

[22]  M. O. A. Ellis,et al.  Atomistic spin model simulations of magnetic nanomaterials , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  K. O’Grady,et al.  Effect of the distribution of anisotropy constants on hysteresis losses for magnetic hyperthermia applications , 2013 .

[24]  Francesca Peiró,et al.  Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications , 2013, Scientific Reports.

[25]  U. Nowak,et al.  Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticle ensembles , 2012 .

[26]  C. Kumar,et al.  Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. , 2011, Advanced drug delivery reviews.

[27]  Morteza Mahmoudi,et al.  Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. , 2011, Advances in colloid and interface science.

[28]  R. Chantrell,et al.  Temperature dependence of the effective anisotropies in magnetic nanoparticles with Néel surface anisotropy , 2010 .

[29]  O. Hovorka,et al.  Energy losses in interacting fine-particle magnetic composites , 2010 .

[30]  Arturo Mediano,et al.  Influence of dipolar interactions on hyperthermia properties of ferromagnetic particles , 2010 .

[31]  M. Muhammed,et al.  Cubic versus spherical magnetic nanoparticles: the role of surface anisotropy. , 2008, Journal of the American Chemical Society.

[32]  J. Restrepo,et al.  Surface anisotropy of a Fe3O4 nanoparticle: A simulation approach , 2007 .

[33]  R. Chantrell,et al.  Effective anisotropies and energy barriers of magnetic nanoparticles with Néel surface anisotropy , 2007, 0705.1689.

[34]  J. Restrepo,et al.  Surface anisotropy in maghemite nanoparticles , 2006 .

[35]  D. Faivre,et al.  Morphology of nanomagnetite crystals: Implications for formation conditions , 2005 .

[36]  D. Mailly,et al.  Magnetic anisotropy in single clusters , 2004 .

[37]  C. Bárcena,et al.  APPLICATIONS OF MAGNETIC NANOPARTICLES IN BIOMEDICINE , 2003 .

[38]  H. Kachkachi,et al.  Surface contribution to the anisotropy of magnetic nanoparticles. , 2002, Physical review letters.

[39]  J. Coey,et al.  Surface anisotropy in ferromagnetic nanoparticles , 2002 .

[40]  Ò. Iglesias,et al.  Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations , 2001, cond-mat/0101348.

[41]  D. Mailly,et al.  Magnetic anisotropy of a single cobalt nanocluster. , 2000, Physical review letters.

[42]  E. Tronc,et al.  Finite-size versus surface effects in nanoparticles , 1999, cond-mat/9910393.

[43]  E. Tronc,et al.  Surface effects in nanoparticles: application to maghemite -Fe O , 1999, cond-mat/9903398.

[44]  R. Kodama,et al.  Atomic-scale magnetic modeling of oxide nanoparticles , 1999 .

[45]  F. Lázaro,et al.  Langevin-dynamics study of the dynamical properties of small magnetic particles , 1998 .

[46]  Amikam Aharoni,et al.  Demagnetizing factors for rectangular ferromagnetic prisms , 1998 .

[47]  S. Linderoth,et al.  Surface effects in metallic iron nanoparticles. , 1994, Physical review letters.

[48]  H. Güntherodt,et al.  Charge freezing and surface anisotropy on magnetite (100) , 1993 .

[49]  E. Gorter Some Properties of Ferrites in Connection with Their Chemistry , 1955, Proceedings of the IRE.

[50]  J. Osborn Demagnetizing Factors of the General Ellipsoid , 1945 .

[51]  Anna Papst,et al.  Introduction To Magnetism And Magnetic Materials , 2016 .

[52]  K. Köhr Neutron Scattering and Polarization by Ferromagnetic Materials , 2011 .

[53]  J. Sachs A simulation approach , 2004 .