Improved Iterative Curvelet Thresholding for Compressed Sensing and Measurement

A new theory named compressed sensing (CS) for simultaneous sampling and compression of signals indicates novel mechanism and design for measurement instrumentation. In this paper, we concern the recovery methods for the CS measurements. First, we investigate how the iterative curvelet thresholding (ICT) can be improved for sparse reconstruction of CS undetermined linear inverse problem, by considering several accelerated strategies, including the following: 1) Bioucas-Dias and Figueiredo's two-step iteration; 2) Beck and Teboulle's fast method; 3) and Osher linearized Bregman iteration. Secondly, we propose a two-stage active-set anisotropic-total-variation-(ATV) minimization-based ICT. In the first stage, a curvelet thresholding is applied to obtain a rough approximation of objects, and the index of remained significant coefficients is labeled as an active set. A Barzilai-Borwein-Dai-Yuan (BBDY) step size is used to accelerate the gradient line search. In the second stage, an active-set-constrained ATV minimization is applied, in which only insignificant coefficients beyond the active set are changed into small values, subjecting to ATV minimization of reconstructed objects. Numerical experiments show good performance of the improved ICT methods for single-pixel imaging and Fourier-domain CS imaging in remote sensing and medical engineering.

[1]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[2]  Bin Dong,et al.  Fast Linearized Bregman Iteration for Compressive Sensing and Sparse Denoising , 2011, ArXiv.

[3]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[4]  Jian-Feng Cai,et al.  Linearized Bregman iterations for compressed sensing , 2009, Math. Comput..

[5]  Gerlind Plonka-Hoch,et al.  Curvelet-Wavelet Regularized Split Bregman Iteration for Compressed Sensing , 2011, Int. J. Wavelets Multiresolution Inf. Process..

[6]  A. Elmoataz,et al.  Nonlocal Anisotropic Discrete Regularization for Image, Data Filtering and Clustering , 2007 .

[7]  Ya-xiang,et al.  A NEW STEPSIZE FOR THE STEEPEST DESCENT METHOD , 2006 .

[8]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[9]  Jean-Luc Starck,et al.  Compressed Sensing in Astronomy , 2008, IEEE Journal of Selected Topics in Signal Processing.

[10]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[11]  Robert D. Nowak,et al.  Distilled sensing: selective sampling for sparse signal recovery , 2009, AISTATS.

[12]  M. Fornasier Domain decomposition methods for linear inverse problems with sparsity constraints , 2007 .

[13]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[14]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[15]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[16]  Yin Zhang,et al.  A Fast Algorithm for Sparse Reconstruction Based on Shrinkage, Subspace Optimization, and Continuation , 2010, SIAM J. Sci. Comput..

[17]  Ya-Xiang Yuan,et al.  Analysis of monotone gradient methods , 2005 .

[18]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[19]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[20]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[21]  Jian-Feng Cai,et al.  Convergence of the linearized Bregman iteration for ℓ1-norm minimization , 2009, Math. Comput..

[22]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[23]  Jianwei Ma,et al.  Combined Complex Ridgelet Shrinkage and Total Variation Minimization , 2006, SIAM J. Sci. Comput..

[24]  François-Xavier Le Dimet,et al.  Deblurring From Highly Incomplete Measurements for Remote Sensing , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Jacques Froment,et al.  Reconstruction of Wavelet Coefficients Using Total Variation Minimization , 2002, SIAM J. Sci. Comput..

[26]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[27]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[28]  Jianwei Ma,et al.  Compressed Sensing for Surface Characterization and Metrology , 2010, IEEE Transactions on Instrumentation and Measurement.

[29]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[30]  Gerlind Plonka-Hoch,et al.  The Curvelet Transform , 2010, IEEE Signal Processing Magazine.

[31]  Guillermo Sapiro,et al.  Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization , 2009, IEEE Transactions on Image Processing.

[32]  Jianwei Ma,et al.  Single-Pixel Remote Sensing , 2009, IEEE Geoscience and Remote Sensing Letters.

[33]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[34]  Stephen J. Wright,et al.  Toeplitz-Structured Compressed Sensing Matrices , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[35]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[36]  Michael Elad,et al.  Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization , 2007 .

[37]  L. Zanni,et al.  Accelerating gradient projection methods for ℓ1-constrained signal recovery by steplength selection rules , 2009 .

[38]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[39]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[40]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[41]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[42]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[43]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[44]  Friedrich T. Sommer,et al.  Adaptive compressed sensing — A new class of self-organizing coding models for neuroscience , 2009, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[45]  Justin K. Romberg,et al.  Compressive Sensing by Random Convolution , 2009, SIAM J. Imaging Sci..

[46]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[47]  I. Daubechies,et al.  Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints , 2007, 0706.4297.

[48]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[49]  Wotao Yin,et al.  Analysis and Generalizations of the Linearized Bregman Method , 2010, SIAM J. Imaging Sci..

[50]  Jianwei Ma,et al.  A Review of Curvelets and Recent Applications , 2009 .

[51]  Michael Unser,et al.  A Fast Multilevel Algorithm for Wavelet-Regularized Image Restoration , 2009, IEEE Transactions on Image Processing.

[52]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[53]  Akram Aldroubi,et al.  Sequential adaptive compressed sampling via Huffman codes , 2008, ArXiv.

[54]  Jianwei Ma,et al.  Tetrolet shrinkage with anisotropic total variation minimization for image approximation , 2010, Signal Process..

[55]  Yin Zhang,et al.  User’s Guide for TVAL3: TV Minimization by Augmented Lagrangian and Alternating Direction Algorithms , 2010 .

[56]  Michael Elad,et al.  Optimized Projections for Compressed Sensing , 2007, IEEE Transactions on Signal Processing.

[57]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[58]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.