Neutron resonance fission neutron analysis for nondestructive fissile material assay

[1]  N. Matsuda,et al.  Japanese evaluated nuclear data library version 5: JENDL-5 , 2023, Journal of Nuclear Science and Technology.

[2]  H. Yamanishi,et al.  Rod-shaped pulse shape discrimination plastic scintillation detectors applied for neutron source direction survey , 2022, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[3]  Jaehong Lee,et al.  Designs and neutronic characteristics of an epithermal neutron moderator at ambient temperature for neutron time-of-flight measurements , 2022, Journal of Nuclear Science and Technology.

[4]  K. Abbas,et al.  Development and testing of a Delayed Gamma-ray Spectroscopy instrument utilizing Cf-252 neutrons evaluated for nuclear safeguards applications , 2021 .

[5]  V. Kadilin,et al.  Calibration of EJ-276 plastic scintillator for neutron–gamma pulse shape discrimination experiments , 2021 .

[6]  R. Goldston,et al.  Neutron-Resonance Transmission Analysis with a Compact Deuterium-Tritium Neutron Generator , 2020, Physical Review Applied.

[7]  M. Koizumi,et al.  Correlating the fissile mass of standard uranium samples with delayed gamma rays from fission products , 2020 .

[8]  M. Grodzicka-Kobylka,et al.  Fast neutron and gamma ray pulse shape discrimination in EJ-276 and EJ-276G plastic scintillators , 2020, Journal of Instrumentation.

[9]  Y. Toh Development of active neutron NDA system for nuclear non-proliferation and nuclear security (3) , 2019 .

[10]  Kenichi Watanabe,et al.  Development of a neutron source for imaging at the electron linac facility in Kyoto University Research Reactor Institute , 2018, Physica B: Condensed Matter.

[11]  M. Komeda,et al.  Performance evaluation of differential die-away system in an integrated active neutron NDA system for nuclear non-proliferation and nuclear security , 2018, 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC).

[12]  S. A. Payne,et al.  Recent developments in plastic scintillators with pulse shape discrimination , 2018 .

[13]  M. Sasano,et al.  PANDORA, a large volume low-energy neutron detector with real-time neutron–gamma discrimination , 2017 .

[14]  Jaehong Lee,et al.  Analysis of energy resolution in the KURRI-LINAC pulsed neutron facility , 2017 .

[15]  J. Heyse,et al.  Neutron resonance analysis for nuclear safeguards and security applications , 2017 .

[16]  M. Kureta,et al.  Study of the neutron multiplication effect in an active neutron method , 2017 .

[17]  P. Jansson,et al.  Design of a Prototype Differential Die‐Away Instrument Proposed for Swedish Spent Nuclear Fuel Characterization , 2016 .

[18]  C. Gwon,et al.  Comparing the response of PSD-capable plastic scintillator to standard liquid scintillator , 2015 .

[19]  S. Pozzi,et al.  Neutron response characterization for an EJ299-33 plastic scintillation detector , 2014 .

[20]  Alice Tomanin,et al.  Characterization of a cubic EJ-309 liquid scintillator detector , 2014 .

[21]  G. Nebbia,et al.  Experimental tests of the new plastic scintillator with pulse shape discrimination capabilities EJ-299-33 , 2014 .

[22]  Sara A. Pozzi,et al.  Pulse shape discrimination in the plastic scintillator EJ-299-33 , 2013 .

[23]  F. Hambsch,et al.  Improved values for the characteristics of prompt-fission gamma-ray spectra from the reaction U-235(n(th), f) , 2013 .

[24]  A. Glenn,et al.  Studies of neutron–γ pulse shape discrimination in EJ-309 liquid scintillator using charge integration method , 2013 .

[25]  J. Heyse,et al.  Determination of Resonance Parameters and their Covariances from Neutron Induced Reaction Cross Section Data , 2012 .

[26]  G. Nebbia,et al.  Neutron detection in a high gamma-ray background with EJ-301 and EJ-309 liquid scintillators , 2012 .

[27]  M. Moszynski,et al.  Suppression of gamma-ray sensitivity of liquid scintillators for neutron detection , 2011 .

[28]  J. W. Sterbentz,et al.  Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge , 2010 .

[29]  R. Wolters,et al.  Digital pulse-shape discrimination of fast neutrons and gamma rays , 2008, 0805.0692.

[30]  H. Harada,et al.  Measurement of Neutron Capture Cross Section of 237Np from 0.02 to 100 eV , 2005 .

[31]  J. W. Behrens,et al.  Neutron Resonance Transmission Analysis of Reactor Fuel Samples , 1984 .

[32]  W. Scobel,et al.  An electronic circuit for pulse shape discrimination in organic scintillators , 1976 .

[33]  G. W. Mcbeth,et al.  Pulse shape discrimination in inorganic and organic scintillators. I , 1971 .

[34]  O. Serot,et al.  Prompt fission neutron spectra of actinides , 2016 .

[35]  Performance values for non destructive assay (NDA) techiques applied to safeguards: The 2002 evaluation by the Esarda NDA working group , 2004 .

[36]  P. Siegler,et al.  Neutron-resonance capture analysis of materials , 2000 .