A finite element method for Allen-Cahn equation on deforming surface

The paper studies an Allen-Cahn-type equation defined on a time-dependent surface as a model of phase separation with order-disorder transition in a thin material layer. By a formal inner-outer expansion, it is shown that the limiting behavior of the solution is a geodesic mean curvature type flow in reference coordinates. A geometrically unfitted finite element method, known as a trace FEM, is considered for the numerical solution of the equation. The paper provides full stability analysis and convergence analysis that accounts for interpolation errors and an approximate recovery of the geometry.

[1]  Harald Garcke,et al.  Second order phase field asymptotics for multi-component systems , 2006 .

[2]  T. Blesgen,et al.  A generalization of the Navier-Stokes equations to two-phase flows , 1999 .

[3]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[5]  Charles M. Elliott,et al.  A Surface Phase Field Model for Two-Phase Biological Membranes , 2010, SIAM J. Appl. Math..

[6]  Charles M. Elliott,et al.  Evolving surface finite element method for the Cahn–Hilliard equation , 2013, Numerische Mathematik.

[7]  Christoph Lehrenfeld,et al.  Analysis of a High-Order Trace Finite Element Method for PDEs on Level Set Surfaces , 2016, SIAM J. Numer. Anal..

[8]  Maxim A. Olshanskii,et al.  Trace Finite Element Methods for PDEs on Surfaces , 2016, 1612.00054.

[9]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .

[10]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[11]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[12]  Annalisa Quaini,et al.  Numerical modelling of phase separation on dynamic surfaces , 2019, J. Comput. Phys..

[13]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[14]  T. Fries,et al.  Higher‐order accurate integration of implicit geometries , 2016 .

[15]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .

[16]  T. Hou,et al.  Discrete maximum-norm stability of a linearized second-order finite difference scheme for Allen–Cahn equation , 2017 .

[17]  F. Kummer,et al.  Highly accurate surface and volume integration on implicit domains by means of moment‐fitting , 2013 .

[18]  Christoph Lehrenfeld,et al.  An Eulerian finite element method for PDEs in time-dependent domains , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[19]  P. Souganidis,et al.  Phase Transitions and Generalized Motion by Mean Curvature , 1992 .

[20]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[21]  Maxim A. Olshanskii,et al.  A Trace Finite Element Method for PDEs on Evolving Surfaces , 2016, SIAM J. Sci. Comput..

[22]  Yongho Choi,et al.  A finite difference method for a conservative Allen-Cahn equation on non-flat surfaces , 2017, J. Comput. Phys..

[23]  M. Olshanskii,et al.  A Stabilized Trace Finite Element Method for Partial Differential Equations on Evolving Surfaces , 2017, SIAM J. Numer. Anal..

[24]  Mehdi Dehghan,et al.  Numerical Simulation and Error Estimation of the Time-Dependent Allen–Cahn Equation on Surfaces with Radial Basis Functions , 2018, J. Sci. Comput..

[25]  Maxim A. Olshanskii,et al.  A TRACE FINITE ELEMENT METHOD FOR A CLASS OF COUPLED BULK-INTERFACE TRANSPORT PROBLEMS ∗ , 2014, 1406.7694.

[26]  Xinlong Feng,et al.  Unconditionally maximum principle preserving finite element schemes for the surface Allen–Cahn type equations , 2019, Numerical Methods for Partial Differential Equations.

[27]  Maxim A. Olshanskii,et al.  Numerical Analysis and Scientific Computing Preprint Seria Inf-sup stability of geometrically unfitted Stokes finite elements , 2016 .

[28]  Yunqing Huang,et al.  Adaptive operator splitting finite element method for Allen–Cahn equation , 2019, Numerical Methods for Partial Differential Equations.

[29]  Charles M. Elliott,et al.  Modeling and computation of two phase geometric biomembranes using surface finite elements , 2010, J. Comput. Phys..

[30]  Maxim A. Olshanskii,et al.  An Eulerian Space-Time Finite Element Method for Diffusion Problems on Evolving Surfaces , 2013, SIAM J. Numer. Anal..

[31]  Francisco Guillén-González,et al.  Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models , 2014, Comput. Math. Appl..

[32]  Paul C. Fife,et al.  Dynamics of Layered Interfaces Arising from Phase Boundaries , 1988 .

[33]  Sarah L Veatch,et al.  Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. , 2003, Biophysical journal.

[34]  R. I. Saye,et al.  High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles , 2015, SIAM J. Sci. Comput..

[35]  Wolfgang A. Wall,et al.  Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods , 2013 .

[36]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[37]  G. Schimperna Abstract approach to evolution equations of phase-field type and applications , 1999 .

[38]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[39]  B. Stinner,et al.  The Cahn-Hilliard equation on an evolving surface , 2016, 1607.05627.

[40]  Arnold Reusken,et al.  Analysis of trace finite element methods for surface partial differential equations , 2015 .

[41]  Fei Liu,et al.  Stabilized semi‐implicit spectral deferred correction methods for Allen–Cahn and Cahn–Hilliard equations , 2015 .

[42]  Christoph Lehrenfeld,et al.  High order unfitted finite element methods on level set domains using isoparametric mappings , 2015, ArXiv.

[43]  Reinhard Lipowsky,et al.  The conformation of membranes , 1991, Nature.

[44]  Wolfgang A. Wall,et al.  Interface handling for three‐dimensional higher‐order XFEM‐computations in fluid–structure interaction , 2009 .

[45]  A. Quaini,et al.  A computational study of lateral phase separation in biological membranes , 2018, International journal for numerical methods in biomedical engineering.