An Unprecedented Set of High‐Resolution Earth System Simulations for Understanding Multiscale Interactions in Climate Variability and Change

We present an unprecedented set of high‐resolution climate simulations, consisting of a 500‐year pre‐industrial control simulation and a 250‐year historical and future climate simulation from 1850 to 2100. A high‐resolution configuration of the Community Earth System Model version 1.3 (CESM1.3) is used for the simulations with a nominal horizontal resolution of 0.25° for the atmosphere and land models and 0.1° for the ocean and sea‐ice models. At these resolutions, the model permits tropical cyclones and ocean mesoscale eddies, allowing interactions between these synoptic and mesoscale phenomena with large‐scale circulations. An overview of the results from these simulations is provided with a focus on model drift, mean climate, internal modes of variability, representation of the historical and future climates, and extreme events. Comparisons are made to solutions from an identical set of simulations using the standard resolution (nominal 1°) CESM1.3 and to available observations for the historical period to address some key scientific questions concerning the impact and benefit of increasing model horizontal resolution in climate simulations. An emerging prominent feature of the high‐resolution pre‐industrial simulation is the intermittent occurrence of polynyas in the Weddell Sea and its interaction with an Interdecadal Pacific Oscillation. Overall, high‐resolution simulations show significant improvements in representing global mean temperature changes, seasonal cycle of sea‐surface temperature and mixed layer depth, extreme events and in relationships between extreme events and climate modes.

[1]  J. Chan,et al.  ENSO and Tropical Cyclones , 2020 .

[2]  M. Mcphaden,et al.  El Niño Southern Oscillation in a Changing Climate , 2020, Geophysical Monograph Series.

[3]  Guangwen Yang,et al.  Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform , 2020 .

[4]  J. Jungclaus,et al.  Multiple drivers of the North Atlantic warming hole , 2020, Nature Climate Change.

[5]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[6]  P. Chang,et al.  A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods , 2020, Atmosphere.

[7]  G. Danabasoglu,et al.  Projected Future Changes in Tropical Cyclones Using the CMIP6 HighResMIP Multimodel Ensemble , 2020, Geophysical research letters.

[8]  W. Weijer,et al.  Causal Interactions between Southern Ocean Polynyas and High-Latitude Atmosphere–Ocean Variability , 2020, Journal of Climate.

[9]  Christopher M. Horvat,et al.  Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2) , 2020, Geoscientific Model Development.

[10]  J. Seddon,et al.  Sensitivity of the Atlantic Meridional Overturning Circulation to Model Resolution in CMIP6 HighResMIP Simulations and Implications for Future Changes , 2020, Journal of Advances in Modeling Earth Systems.

[11]  F. Martin Ralph,et al.  Responses and impacts of atmospheric rivers to climate change , 2020, Nature Reviews Earth & Environment.

[12]  K. Emanuel,et al.  Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming , 2020, Bulletin of the American Meteorological Society.

[13]  J. Seddon,et al.  Impact of Model Resolution on Tropical Cyclone Simulation Using the HighResMIP–PRIMAVERA Multimodel Ensemble , 2020, Journal of Climate.

[14]  Guangwen Yang,et al.  Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform , 2020, Geoscientific Model Development.

[15]  W. G. Strand,et al.  The Community Earth System Model Version 2 (CESM2) , 2020, Journal of Advances in Modeling Earth Systems.

[16]  F. Bryan,et al.  What Drives Upper-Ocean Temperature Variability in Coupled Climate Models and Observations? , 2020, Journal of Climate.

[17]  D. Bader,et al.  Initial Results From the Super‐Parameterized E3SM , 2020, Journal of Advances in Modeling Earth Systems.

[18]  Lu Dong,et al.  The DOE E3SM Coupled Model Version 1: Description and Results at High Resolution , 2019, Journal of Advances in Modeling Earth Systems.

[19]  S. Nicholson,et al.  Global Impacts of Subseasonal (<60 Day) Wind Variability on Ocean Surface Stress, Buoyancy Flux, and Mixed Layer Depth , 2019 .

[20]  W. G. Strand,et al.  Effects of Model Resolution, Physics, and Coupling on Southern Hemisphere Storm Tracks in CESM1.3 , 2019, Geophysical Research Letters.

[21]  K. Emanuel,et al.  Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution , 2019, Bulletin of the American Meteorological Society.

[22]  M. Spall,et al.  Recent Contributions of Theory to Our Understanding of the Atlantic Meridional Overturning Circulation , 2019, Journal of Geophysical Research: Oceans.

[23]  J. Jungclaus,et al.  Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP) , 2018, Geoscientific Model Development.

[24]  Nathan Lenssen,et al.  Improvements in the GISTEMP Uncertainty Model , 2019, Journal of Geophysical Research: Atmospheres.

[25]  J. Seddon,et al.  Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments , 2019, Geoscientific Model Development.

[26]  Patrick Heimbach,et al.  Atlantic Meridional Overturning Circulation: Observed Transport and Variability , 2019, Front. Mar. Sci..

[27]  G. Danabasoglu,et al.  A Review of the Role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and Associated Climate Impacts , 2019, Reviews of Geophysics.

[28]  P. Chang,et al.  Mesoscale SST Dynamics in the Kuroshio–Oyashio Extension Region , 2019, Journal of Physical Oceanography.

[29]  F. Bryan,et al.  Air–Sea Turbulent Heat Fluxes in Climate Models and Observational Analyses: What Drives Their Variability? , 2019, Journal of Climate.

[30]  G. Meehl,et al.  Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016 , 2019, Nature Communications.

[31]  B. Kirtman,et al.  100 Years of Progress in Understanding the Dynamics of Coupled Atmosphere–Ocean Variability , 2019, Meteorological Monographs.

[32]  G. Lapeyre,et al.  Storm Track Response to Oceanic Eddies in Idealized Atmospheric Simulations , 2018, Journal of Climate.

[33]  P. Chang,et al.  The impact of climate model sea surface temperature biases on tropical cyclone simulations , 2018, Climate Dynamics.

[34]  W. Weijer,et al.  Preconditioning and Formation of Maud Rise Polynyas in a High-Resolution Earth System Model , 2018, Journal of Climate.

[35]  Michael F. Wehner,et al.  The Benefits of Global High Resolution for Climate Simulation: Process Understanding and the Enabling of Stakeholder Decisions at the Regional Scale , 2018, Bulletin of the American Meteorological Society.

[36]  Anna S. Vozmishcheva,et al.  Poleward migration of the destructive effects of tropical cyclones during the 20th century , 2018, Proceedings of the National Academy of Sciences.

[37]  A. Dowdy,et al.  Projections of southern hemisphere tropical cyclone track density using CMIP5 models , 2018, Climate Dynamics.

[38]  A. Mariano,et al.  Cross-spectral analysis of the SST/10-m wind speed coupling resolved by satellite products and climate model simulations , 2018, Climate Dynamics.

[39]  Masahisa Kubota,et al.  An introduction to J-OFURO3, a third-generation Japanese ocean flux data set using remote-sensing observations , 2018, Journal of Oceanography.

[40]  K. Walsh,et al.  Recent poleward shift of tropical cyclone formation linked to Hadley cell expansion , 2018, Nature Climate Change.

[41]  Daniel Walton,et al.  Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design , 2018, Geoscientific Model Development.

[42]  K. Tung,et al.  Interdecadal variability in pan-Pacific and global SST, revisited , 2018, Climate Dynamics.

[43]  U. Schneider,et al.  The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation. , 2018, Atmosphere.

[44]  M. Pritchard,et al.  Rainfall From Resolved Rather Than Parameterized Processes Better Represents the Present‐Day and Climate Change Response of Moderate Rates in the Community Atmosphere Model , 2018, Journal of advances in modeling earth systems.

[45]  J. Wallace,et al.  Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures , 2018 .

[46]  Dimitris Menemenlis,et al.  Ocean submesoscales as a key component of the global heat budget , 2018, Nature Communications.

[47]  David A. Smeed,et al.  The North Atlantic Ocean Is in a State of Reduced Overturning , 2018 .

[48]  D. Lavers,et al.  Global Analysis of Climate Change Projection Effects on Atmospheric Rivers , 2017 .

[49]  B. Kirtman,et al.  Ocean eddies and climate predictability. , 2017, Chaos.

[50]  Young‐Oh Kwon,et al.  Estimation of the SST Response to Anthropogenic and External Forcing and Its Impact on the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation , 2017 .

[51]  Kerry Emanuel,et al.  Assessing the present and future probability of Hurricane Harvey’s rainfall , 2017, Proceedings of the National Academy of Sciences.

[52]  Thomas M. Smith,et al.  Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons , 2017 .

[53]  Frank O. Bryan,et al.  Scale Dependence of Midlatitude Air–Sea Interaction , 2017 .

[54]  S. Griffies,et al.  Preconditioning of the Weddell Sea Polynya by the Ocean Mesoscale and Dense Water Overflows , 2017 .

[55]  Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico , 2017 .

[56]  Hisashi Nakamura,et al.  Importance of Resolving Kuroshio Front and Eddy Influence in Simulating the North Pacific Storm Track , 2017 .

[57]  Hailong Wang,et al.  Local Atmospheric Response to an Open-Ocean Polynya in a High-Resolution Climate Model , 2017 .

[58]  Paul A. Ullrich,et al.  Assessing sensitivities in algorithmic detection of tropical cyclones in climate data , 2017 .

[59]  Shoshiro Minobe,et al.  Storm-Track Response to SST Fronts in the Northwestern Pacific Region in an AGCM , 2017 .

[60]  S. Xie,et al.  WES feedback and the Atlantic Meridional Mode: observations and CMIP5 comparisons , 2016, Climate Dynamics.

[61]  D. R. Watts,et al.  Mean Antarctic Circumpolar Current transport measured in Drake Passage , 2016 .

[62]  M. Manga,et al.  Increased stream discharge after the 3 September 2016 Mw 5.8 Pawnee, Oklahoma earthquake , 2016 .

[63]  Jian Lu,et al.  High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6 , 2016 .

[64]  Guangwen Yang,et al.  P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0 , 2016 .

[65]  Paul A. Ullrich,et al.  TempestExtremes: a framework for scale-insensitive pointwise feature tracking on unstructured grids , 2016 .

[66]  Richard J. Greatbatch,et al.  Western boundary currents regulated by interaction between ocean eddies and the atmosphere , 2016, Nature.

[67]  Hisashi Nakamura,et al.  The Pacific Decadal Oscillation, Revisited , 2016 .

[68]  W. Collins,et al.  Resolution dependence of precipitation statistical fidelity in hindcast simulations , 2016 .

[69]  J. Thepaut,et al.  ERA-20C: An Atmospheric Reanalysis of the Twentieth Century , 2016 .

[70]  Benjamin Kirtman,et al.  Atlantic near‐term climate variability and the role of a resolved Gulf Stream , 2016 .

[71]  T. Woollings,et al.  The signature of low‐frequency oceanic forcing in the Atlantic Multidecadal Oscillation , 2016 .

[72]  Erika Coppola,et al.  A multimodel intercomparison of resolution effects on precipitation: simulations and theory , 2016, Climate Dynamics.

[73]  John Marshall,et al.  Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review , 2016 .

[74]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[75]  W. Large,et al.  The Benguela upwelling system: Quantifying the sensitivity to resolution and coastal wind representation in a global climate model , 2015 .

[76]  Xiaopei Lin,et al.  Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns? , 2015, Scientific Reports.

[77]  B. Anderson,et al.  ENSO and meridional modes: A null hypothesis for Pacific climate variability , 2015 .

[78]  Guangwen Yang,et al.  Improving the scalability of the ocean barotropic solver in the community earth system model , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.

[79]  R. Caballero,et al.  Impacts of high-latitude volcanic eruptions on ENSO and AMOC , 2015, Proceedings of the National Academy of Sciences.

[80]  K.,et al.  The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability , 2015 .

[81]  S. Rahmstorf,et al.  Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation , 2015 .

[82]  S. Sorooshian,et al.  PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies , 2015 .

[83]  Jian Lu,et al.  Resolution and Dynamical Core Dependence of Atmospheric River Frequency in Global Model Simulations , 2015 .

[84]  Andrew T. Wittenberg,et al.  Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models , 2015 .

[85]  C. O’Reilly,et al.  The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability , 2015 .

[86]  D. Lawrence,et al.  A new synoptic scale resolving global climate simulation using the Community Earth System Model , 2014 .

[87]  K. Emanuel,et al.  The poleward migration of the location of tropical cyclone maximum intensity , 2014, Nature.

[88]  Nick Rayner,et al.  The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations , 2014 .

[89]  L. Gimeno,et al.  Atmospheric rivers: a mini-review , 2014, Front. Earth Sci..

[90]  Patrick Heimbach,et al.  North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states , 2014 .

[91]  Lennart Bengtsson,et al.  An inter-hemispheric comparison of the tropical storm response to global warming , 2014, Climate Dynamics.

[92]  J. McBride,et al.  Projected Changes in Late-Twenty-First-Century Tropical Cyclone Frequency in 13 Coupled Climate Models from Phase 5 of the Coupled Model Intercomparison Project , 2013 .

[93]  S. Camargo Global and Regional Aspects of Tropical Cyclone Activity in the CMIP5 Models , 2013 .

[94]  M. Latif,et al.  Southern Ocean Sector Centennial Climate Variability and Recent Decadal Trends , 2013 .

[95]  Daniel R. Marsh,et al.  Climate change from 1850 to 2005 simulated in CESM1(WACCM) , 2013 .

[96]  Jiansong Zhou,et al.  Using data to attribute episodes of warming and cooling in instrumental records , 2013, Proceedings of the National Academy of Sciences.

[97]  M. Baringer,et al.  Ocean Heat Transport , 2013 .

[98]  S. Drijfhout,et al.  Is a Decline of AMOC Causing the Warming Hole above the North Atlantic in Observed and Modeled Warming Patterns , 2012 .

[99]  Frank O. Bryan,et al.  Impact of ocean model resolution on CCSM climate simulations , 2012, Climate Dynamics.

[100]  A. Phillips,et al.  Variability of the Atlantic meridional overturning circulation in CCSM4 , 2012 .

[101]  G. Danabasoglu,et al.  Sensitivity of Atlantic Meridional Overturning Circulation Variability to Parameterized Nordic Sea Overflows in CCSM4 , 2012 .

[102]  Nicolas Bellouin,et al.  Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. , 2012, Nature.

[103]  Mingfang Ting,et al.  Robust features of Atlantic multi‐decadal variability and its climate impacts , 2011 .

[104]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[105]  G. P. Kyle,et al.  Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways , 2011 .

[106]  J. Sallée,et al.  Subduction over the Southern Indian Ocean in a High-Resolution Atmosphere-Ocean Coupled Model , 2011 .

[107]  Norden E. Huang,et al.  On the time-varying trend in global-mean surface temperature , 2011 .

[108]  William E. Johns,et al.  Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at 26.5°N , 2011 .

[109]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[110]  Man-Duck Lee,et al.  Subduction over the Southern Indian Ocean in a High-Resolution Atmosphere – Ocean Coupled Model , 2011 .

[111]  D. Lawrence,et al.  Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model , 2011 .

[112]  Gokhan Danabasoglu,et al.  Climate impacts of parameterized Nordic Sea overflows , 2010 .

[113]  B. Samuels,et al.  Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations , 2010 .

[114]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[115]  Frank O. Bryan,et al.  A prototype two-decade fully-coupled fine-resolution CCSM simulation , 2010 .

[116]  C. Deser,et al.  Twentieth century tropical sea surface temperature trends revisited , 2010 .

[117]  C. J. Neumann,et al.  The International Best Track Archive for Climate Stewardship (IBTrACS): unifying tropical cyclone data. , 2010 .

[118]  Mariana Vertenstein,et al.  The Parallel Ocean Program (POP) reference manual: Ocean component of the Community Climate System Model (CCSM) , 2010 .

[119]  R. Garcia,et al.  Toward a Physically Based Gravity Wave Source Parameterization in a General Circulation Model , 2010 .

[120]  Sarah M. Kang,et al.  The Tropical Response to Extratropical Thermal Forcing in an Idealized GCM: The Importance of Radiative Feedbacks and Convective Parameterization , 2009 .

[121]  Lynne D. Talley,et al.  A New Algorithm for Finding Mixed Layer Depths with Applications to Argo Data and Subantarctic Mode Water Formation , 2009 .

[122]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[123]  A. Wittenberg Are historical records sufficient to constrain ENSO simulations? , 2009 .

[124]  R. Seager,et al.  Forced and Internal Twentieth-Century SST Trends in the North Atlantic* , 2009 .

[125]  P. Chylek,et al.  Multidecadal variability of Atlantic hurricane activity: 1851–2007 , 2008 .

[126]  Sarah M. Kang,et al.  The Response of the ITCZ to Extratropical Thermal Forcing: Idealized Slab-Ocean Experiments with a GCM , 2008 .

[127]  B. Fox‐Kemper,et al.  Parameterization of Mixed Layer Eddies. Part I. Theory and Diagnosis , 2008 .

[128]  S. Nigam,et al.  The North Pacific Oscillation–West Pacific Teleconnection Pattern: Mature-Phase Structure and Winter Impacts , 2008 .

[129]  M. Tippett,et al.  Pacific meridional mode and El Niño—Southern Oscillation , 2007 .

[130]  Bonnie Light,et al.  A Delta-Eddington Mutiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the Community Climate System Model , 2007 .

[131]  M. Latif,et al.  Understanding Equatorial Atlantic Interannual Variability , 2007 .

[132]  R. Wu,et al.  Local Air–Sea Relationship in Observations and Model Simulations , 2006 .

[133]  Kevin E. Trenberth,et al.  Atlantic hurricanes and natural variability in 2005 , 2006 .

[134]  G. Meehl,et al.  Megadroughts in the Indian Monsoon Region and Southwest North America and a Mechanism for Associated Multidecadal Pacific Sea Surface Temperature Anomalies , 2006 .

[135]  Bo Qiu,et al.  Variability of the Kuroshio Extension Jet, Recirculation Gyre, and Mesoscale Eddies on Decadal Time Scales , 2005 .

[136]  R. Sutton,et al.  Atlantic Ocean Forcing of North American and European Summer Climate , 2005, Science.

[137]  D. Vimont,et al.  Analogous Pacific and Atlantic Meridional Modes of Tropical Atmosphere-Ocean Variability* , 2004 .

[138]  A. Hall The role of surface albedo feedback in climate , 2004 .

[139]  N. Wells,et al.  Ocean circulation and climate , 2002 .

[140]  W. M. Gray,et al.  The Recent Increase in Atlantic Hurricane Activity: Causes and Implications , 2001, Science.

[141]  Michael E. Mann,et al.  Observed and Simulated Multidecadal Variability in the Northern Hemisphere , 1999 .

[142]  Shoichi Kizu,et al.  Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO) , 1999 .

[143]  Matthew C. Wheeler,et al.  Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain , 1999 .

[144]  Yong Zhu,et al.  A Proposed Algorithm for Moisture Fluxes from Atmospheric Rivers , 1998 .

[145]  D. Battisti,et al.  The Basic Effects of Atmosphere–Ocean Thermal Coupling on Midlatitude Variability* , 1998 .

[146]  James C. McWilliams,et al.  Sensitivity to Surface Forcing and Boundary Layer Mixing in a Global Ocean Model: Annual-Mean Climatology , 1997 .

[147]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[148]  P. Chang,et al.  A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions , 1997, Nature.

[149]  W. M. Gray,et al.  Climate Trends Associated with Multidecadal Variability of Atlantic Hurricane Activity , 1997 .

[150]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[151]  S. Xie,et al.  A coupled ocean‐atmosphere model of relevance to the ITCZ in the eastern Pacific , 1994 .

[152]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[153]  P. Arkin The Global Precipitation Climatology Project , 1989 .

[154]  Norman A. McFarlane,et al.  The Effect of Orographically Excited Gravity Wave Drag on the General Circulation of the Lower Stratosphere and Troposphere , 1987 .

[155]  R. Peterson,et al.  Volume Transport of the Antarctic Circumpolar Current from Bottom Pressure Measurements , 1985 .

[156]  K. Hasselmann Stochastic climate models Part I. Theory , 1976 .

[157]  S. Gorshkov,et al.  World ocean atlas , 1976 .