Splitting and Matrix Exponential Approach for Jump-Diffusion Models with Inverse Normal Gaussian, Hyperbolic and Meixner Jumps

This paper is a further extension of the method proposed in Itkin (2014) as applied to another set of jump-diffusion models: Inverse Normal Gaussian, Hyperbolic and Meixner. To solve the corresponding PIDEs we accomplish few steps. First, a second-order operator splitting on financial processes (diffusion and jumps) is applied to these PIDEs. To solve the diffusion equation we use standard finite-difference methods. For the jump part, we transform the jump integral into a pseudo-differential operator and construct its second order approximation on a grid which supersets the grid used for the diffusion part. The proposed schemes are unconditionally stable in time and preserve positivity of the solution which is computed either via a matrix exponential, or via its Pade approximation. Various numerical experiments are provided to justify these results.

[1]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[2]  Daniel B. Szyld,et al.  Generalizations of M-matrices which may not have a nonnegative inverse , 2008 .

[3]  W. Schoutens Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .

[4]  Thorsten Gerber,et al.  Handbook Of Mathematical Functions , 2016 .

[5]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[6]  Robert M. Gray,et al.  Toeplitz And Circulant Matrices: A Review (Foundations and Trends(R) in Communications and Information Theory) , 2006 .

[7]  K. B. Oldham,et al.  An Atlas of Functions. , 1988 .

[8]  Judith J. McDonald,et al.  Inverses of M-type matrices created with irreducible eventually nonnegative matrices , 2006 .

[9]  E. Eberlein Jump–Type Lévy Processes , 2009 .

[10]  G. Marchuk Methods of Numerical Mathematics , 1982 .

[11]  E. Denman,et al.  The matrix sign function and computations in systems , 1976 .

[12]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[13]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .

[15]  Rama Cont,et al.  A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..

[16]  R. E. Raab,et al.  Operator Methods in Quantum Mechanics , 1992 .

[17]  George Labahn,et al.  A Semi-Lagrangian Approach for American Asian Options under Jump Diffusion , 2005, SIAM J. Sci. Comput..

[18]  Alexander Lipton,et al.  Mathematical Methods for Foreign Exchange: A Financial Engineer's Approach , 2001 .

[19]  Eurandom,et al.  Meixner Processes in Finance ∗ , 2001 .

[20]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[21]  Leif Andersen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .

[22]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[23]  J. Teugels,et al.  Lévy processes, polynomials and martingales , 1998 .

[24]  George Labahn,et al.  A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.

[25]  D. Duffy Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach , 2006 .

[26]  Mechthild Thalhammer,et al.  Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations , 2013 .

[27]  Ye.G. D'yakonov Difference schemes with a separable operator for general second order parabolic equations with variable coefficients , 1964 .

[28]  K. I. '. Hout,et al.  ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.

[29]  Cornelis W. Oosterlee,et al.  Pricing early-exercise and discrete barrier options by fourier-cosine series expansions , 2009, Numerische Mathematik.

[30]  Andrey Itkin,et al.  Efficient Solution of Backward Jump-Diffusion PIDEs with Splitting and Matrix Exponentials , 2013, 1304.3159.

[31]  Cornelis W. Oosterlee,et al.  A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options under L[e-acute]vy Processes , 2008, SIAM J. Sci. Comput..

[32]  Andrey Itkin,et al.  Using Pseudo-Parabolic and Fractional Equations for Option Pricing in Jump Diffusion Models , 2010 .

[33]  Michael J. Tsatsomeros,et al.  Reachability and Holdability of Nonnegative States , 2008, SIAM J. Matrix Anal. Appl..

[34]  B. Reviews Operator methods in quantum mechanics , 2007 .

[35]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[36]  Iris R. Wang,et al.  Robust numerical valuation of European and American options under the CGMY process , 2007 .

[37]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[38]  Cornelis W. Oosterlee,et al.  A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions , 2008, SIAM J. Sci. Comput..

[39]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[40]  Economical difference schemes for parabolic equations with mixed derivatives , 1964 .

[41]  R. Schilling Financial Modelling with Jump Processes , 2005 .