Splitting and Matrix Exponential Approach for Jump-Diffusion Models with Inverse Normal Gaussian, Hyperbolic and Meixner Jumps
暂无分享,去创建一个
[1] P. Forsyth,et al. Robust numerical methods for contingent claims under jump diffusion processes , 2005 .
[2] Daniel B. Szyld,et al. Generalizations of M-matrices which may not have a nonnegative inverse , 2008 .
[3] W. Schoutens. Lévy Processes in Finance: Pricing Financial Derivatives , 2003 .
[4] Thorsten Gerber,et al. Handbook Of Mathematical Functions , 2016 .
[5] Robert M. Gray,et al. Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.
[6] Robert M. Gray,et al. Toeplitz And Circulant Matrices: A Review (Foundations and Trends(R) in Communications and Information Theory) , 2006 .
[7] K. B. Oldham,et al. An Atlas of Functions. , 1988 .
[8] Judith J. McDonald,et al. Inverses of M-type matrices created with irreducible eventually nonnegative matrices , 2006 .
[9] E. Eberlein. Jump–Type Lévy Processes , 2009 .
[10] G. Marchuk. Methods of Numerical Mathematics , 1982 .
[11] E. Denman,et al. The matrix sign function and computations in systems , 1976 .
[12] Alan L. Lewis. A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .
[13] O. Barndorff-Nielsen. Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[14] N. N. Yanenko,et al. The Method of Fractional Steps , 1971 .
[15] Rama Cont,et al. A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..
[16] R. E. Raab,et al. Operator Methods in Quantum Mechanics , 1992 .
[17] George Labahn,et al. A Semi-Lagrangian Approach for American Asian Options under Jump Diffusion , 2005, SIAM J. Sci. Comput..
[18] Alexander Lipton,et al. Mathematical Methods for Foreign Exchange: A Financial Engineer's Approach , 2001 .
[19] Eurandom,et al. Meixner Processes in Finance ∗ , 2001 .
[20] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[21] Leif Andersen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing , 2000 .
[22] E. Eberlein,et al. New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .
[23] J. Teugels,et al. Lévy processes, polynomials and martingales , 1998 .
[24] George Labahn,et al. A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.
[25] D. Duffy. Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach , 2006 .
[26] Mechthild Thalhammer,et al. Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations , 2013 .
[27] Ye.G. D'yakonov. Difference schemes with a separable operator for general second order parabolic equations with variable coefficients , 1964 .
[28] K. I. '. Hout,et al. ADI finite difference schemes for option pricing in the Heston model with correlation , 2008, 0811.3427.
[29] Cornelis W. Oosterlee,et al. Pricing early-exercise and discrete barrier options by fourier-cosine series expansions , 2009, Numerische Mathematik.
[30] Andrey Itkin,et al. Efficient Solution of Backward Jump-Diffusion PIDEs with Splitting and Matrix Exponentials , 2013, 1304.3159.
[31] Cornelis W. Oosterlee,et al. A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options under L[e-acute]vy Processes , 2008, SIAM J. Sci. Comput..
[32] Andrey Itkin,et al. Using Pseudo-Parabolic and Fractional Equations for Option Pricing in Jump Diffusion Models , 2010 .
[33] Michael J. Tsatsomeros,et al. Reachability and Holdability of Nonnegative States , 2008, SIAM J. Matrix Anal. Appl..
[34] B. Reviews. Operator methods in quantum mechanics , 2007 .
[35] Ole E. Barndorff-Nielsen,et al. Processes of normal inverse Gaussian type , 1997, Finance Stochastics.
[36] Iris R. Wang,et al. Robust numerical valuation of European and American options under the CGMY process , 2007 .
[37] P. Carr,et al. Option valuation using the fast Fourier transform , 1999 .
[38] Cornelis W. Oosterlee,et al. A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions , 2008, SIAM J. Sci. Comput..
[39] E. Eberlein,et al. Hyperbolic distributions in finance , 1995 .
[40] Economical difference schemes for parabolic equations with mixed derivatives , 1964 .
[41] R. Schilling. Financial Modelling with Jump Processes , 2005 .