Geochemical correlation of three large-volume ignimbrites from the Yellowstone hotspot track, Idaho, USA

[1]  B. Bonnichsen The Bruneau‐Jarbidge eruptive center, southwestern Idaho , 2013 .

[2]  G. Andrews,et al.  Emplacement and rheomorphic deformation of a large, lava-like rhyolitic ignimbrite: Grey's Landing, southern Idaho , 2011 .

[3]  T. Barry,et al.  Petrologic constraints on the development of a large-volume, high temperature, silicic magma system: The Twin Falls eruptive centre, central Snake River Plain , 2010 .

[4]  M. Branney,et al.  Silicic phreatomagmatism in the Snake River Plain: the Deadeye Member , 2010 .

[5]  S. Hughes,et al.  Thermal structure beneath the Snake River Plain: Implications for the Yellowstone hotspot , 2009 .

[6]  V. Manea,et al.  The influence of plume head–lithosphere interaction on magmatism associated with the Yellowstone hotspot track , 2009 .

[7]  Finlay M. Stuart,et al.  The ARGUS multicollector noble gas mass spectrometer: Performance for 40Ar/39Ar geochronology , 2009 .

[8]  B. Ellis Rhyolitic Explosive Eruptions of the Central Snake River Plain, Idaho: Investigations of the Lower Cassia Mountains Succession and Surrounding Areas , 2009 .

[9]  S. Hemming,et al.  Neogene tephra correlations in eastern Idaho and Wyoming: Implications for Yellowstone hotspot-related volcanism and tectonic activity , 2009 .

[10]  G. Mahood,et al.  New geologic evidence for additional 16.5–15.5 Ma silicic calderas in northwest Nevada related to initial impingement of the Yellowstone hot spot , 2008 .

[11]  John W. Shervais,et al.  Lithospheric topography, tilted plumes, and the track of the Snake River–Yellowstone hot spot , 2008 .

[12]  B. Hanan,et al.  A plume-triggered delamination origin for the Columbia River Basalt Group , 2008 .

[13]  P. Renne,et al.  Synchronizing Rock Clocks of Earth History , 2008, Science.

[14]  F. Ramos,et al.  Columbia River flood basalts from a centralized crustal magmatic system , 2008 .

[15]  O. Bachmann,et al.  The Magma Reservoirs That Feed Supereruptions , 2008 .

[16]  A. Schmitt,et al.  Voluminous low δ18O magmas in the late Miocene Heise volcanic field, Idaho: Implications for the fate of Yellowstone hotspot calderas , 2007 .

[17]  William D. Gosnold,et al.  Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up , 2007 .

[18]  S. Kay,et al.  Geology of the Vilama caldera : A new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene , 2007 .

[19]  W. McIntosh,et al.  Miocene silicic volcanism in southwestern Idaho: geochronology, geochemistry, and evolution of the central Snake River Plain , 2007, Bulletin of Volcanology.

[20]  G. Andrews,et al.  Rhyolitic ignimbrites in the Rogerson Graben, southern Snake River Plain volcanic province: volcanic stratigraphy, eruption history and basin evolution , 2007, Bulletin of Volcanology.

[21]  T. Barry,et al.  ‘Snake River (SR)-type’ volcanism at the Yellowstone hotspot track: distinctive products from unusual, high-temperature silicic super-eruptions , 2007, Bulletin of Volcanology.

[22]  Colin J. N. Wilson,et al.  Compositional Zoning of the Bishop Tuff , 2007 .

[23]  Der-Chuen Lee,et al.  The Yellowstone hotspot in space and time: Nd and Hf isotopes in silicic magmas , 2006 .

[24]  John W. Shervais,et al.  Layered mafic sill complex beneath the eastern Snake River Plain: Evidence from cyclic geochemical variations in basalt , 2006 .

[25]  P. Baines,et al.  Dynamics of giant volcanic ash clouds from supervolcanic eruptions , 2005 .

[26]  Jonathan M. Gregory,et al.  An AOGCM simulation of the climate response to a volcanic super-eruption , 2005 .

[27]  J. Wolff,et al.  Large-volume, low-δ18O rhyolites of the central Snake River Plain, Idaho, USA , 2005 .

[28]  W. McIntosh,et al.  Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA , 2005 .

[29]  R. Duncan,et al.  Geochronology of age-progressive volcanism of the Oregon High Lava Plains : implications for the plume interpretation of Yellowstone , 2004 .

[30]  Victor E. Camp,et al.  Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest , 2004 .

[31]  Clive Oppenheimer,et al.  The size and frequency of the largest explosive eruptions on Earth , 2004 .

[32]  D. DePaolo,et al.  A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions , 2003 .

[33]  W. Rose,et al.  Sizes and Shapes of 10‐Ma Distal Fall Pyroclasts in the Ogallala Group, Nebraska , 2003, The Journal of Geology.

[34]  Gillian R. Foulger,et al.  Upper-mantle origin of the Yellowstone hotspot , 2002 .

[35]  P. Lipman,et al.  The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado: Rejuvenation and Eruption of an Upper-Crustal Batholith , 2002 .

[36]  J. Obradovich,et al.  Revised ages for tuffs of the Yellowstone Plateau volcanic field: Assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event , 2002 .

[37]  M. Rampino Supereruptions as a threat to civilizations on earth-like planets , 2002 .

[38]  P. Layer,et al.  Phenocrysts versus xenocrysts in the youngest Toba Tuff: Implications for the petrogenesis of 2800 km3 of magma , 2002 .

[39]  E. Christiansen,et al.  The Oligocene Lund Tuff, Great Basin, USA: a very large volume monotonous intermediate , 2002 .

[40]  B. Nash,et al.  Explosive silicic volcanism of the Yellowstone hotspot: The ash fall tuff record , 2002 .

[41]  Colin J. N. Wilson,et al.  The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview , 2001 .

[42]  R. Trumbull,et al.  La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of one of the world's largest resurgent calderas , 2001 .

[43]  F. Brown,et al.  Sequence, age, and source of silicic fallout tuffs in middle to late Miocene basins of the northern Basin and Range province , 1998 .

[44]  P. Lipman,et al.  Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry , 1997 .

[45]  F. Brown,et al.  Fallout tuffs of Trapper Creek, Idaho—A record of Miocene explosive volcanism in the Snake River Plain volcanic province , 1995 .

[46]  V. Camp Mid-Miocene propagation of the Yellowstone mantle plume head beneath the Columbia River basalt source region , 1995 .

[47]  Stephen Self,et al.  Volcanic winter and accelerated glaciation following the Toba super-eruption , 1992, Nature.

[48]  M. Branney,et al.  A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite , 1992 .

[49]  W. Leeman,et al.  Mineralogy and geothermometry of high-temperature rhyolites from the central and western Snake River Plain , 1992 .

[50]  S. Self,et al.  Widespread, lavalike silicic volcanic rocks of Trans-Pecos Texas , 1988 .

[51]  William I. Rose,et al.  Dispersal of ash in the great Toba eruption, 75 ka , 1987 .

[52]  P. Francis,et al.  Ignimbrites of the Cerro Galan caldera, NW Argentina , 1985 .

[53]  E. McKee,et al.  Volcanic Field, Southeast Oregon and North Central Nevada , 1984 .

[54]  P. Lipman The roots of ash flow calderas in western North America: Windows into the tops of granitic batholiths , 1984 .

[55]  R. A. Bailey,et al.  Volcanism, structure, and geochronology of Long Valley Caldera, Mono County, California , 1976 .

[56]  L. Morgan,et al.  OF THE INTERIOR U . S . GEOLOGICAL SURVEY THE TRACK OF THE YELLOWSTONE HOTSPOT : VOLCANISM , FAULTING , AND UPLIFT by , 2010 .

[57]  W. Leeman,et al.  Snake River Plain – Yellowstone silicic volcanism: implications for magma genesis and magma fluxes , 2008 .

[58]  Peter R. Hooper,et al.  The origin of the Columbia River flood basalt province: Plume versus nonplume models , 2007 .

[59]  B. Nash,et al.  The Cougar Point Tuff: Implications for Thermochemical Zonation and Longevity of High-Temperature, Large-Volume Silicic Magmas of the Miocene Yellowstone Hotspot , 2004 .

[60]  G. P. Citron,et al.  The Cougar Point Tuff, Southwestern Idaho and Vicinity , 2001 .

[61]  Robert L. Christiansen,et al.  The Quaternary and Pliocene Yellowstone plateau volcanic field of Wyoming, Idaho, and Montana , 2001 .

[62]  Kenneth L. Pierce,et al.  Chapter 1: The track of the Yellowstone hot spot: Volcanism, faulting, and uplift , 1992 .

[63]  J. Evans Preliminary geologic map of the Dooley Mountain quadrangle, Baker County, Oregon , 1990 .

[64]  J. Mytton,et al.  Geologic map of the Stricker 1 Quadrangle, Cassia, Twin Falls, and Jerome counties, Idaho , 1990 .

[65]  W. E. Elston,et al.  Emory Cauldron, Black Range, New Mexico, source of the Kneeling Nun Tuff , 1975, Las Cruces Country.