A comparative study of interface reconstruction methods for multi-material ALE simulations
暂无分享,去创建一个
Rao V. Garimella | Samuel P. Schofield | Mikhail J. Shashkov | Milan Kucharik | R. Garimella | M. Shashkov | M. Kucharik | S. Schofield
[1] D. Benson. Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .
[2] Mikhail Shashkov,et al. Multi-Scale Lagrangian Shock Hydrodynamics on Q1/P0 Finite Elements: Theoretical Framework and Two-dimensional Computations. , 2008 .
[3] D. B. Kothe,et al. A Parallel, Volume-Tracking Algorithm for Unstructured Meshes , 1996, Parallel CFD.
[4] Raphaël Loubère,et al. A second-order accurate material-order-independent interface reconstruction technique for multi-material flow simulations , 2009, J. Comput. Phys..
[5] Blair Swartz,et al. The second-order sharpening of blurred smooth borders , 1989 .
[6] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[7] V. Rich. Personal communication , 1989, Nature.
[8] M. Shashkov,et al. The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .
[9] C. W. Hirt,et al. Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .
[10] Mathieu Desbrun,et al. Barycentric coordinates for convex sets , 2007, Adv. Comput. Math..
[11] David J. Benson,et al. Eulerian finite element methods for the micromechanics of heterogeneous materials: Dynamic prioritization of material interfaces , 1998 .
[12] David J. Benson,et al. Volume of fluid interface reconstruction methods for multi - material problems , 2002 .
[13] Ted Taylor. Los Alamos National Laboratory , 2005 .
[14] R. B. Pember,et al. A Comparison of Staggered-Mesh Lagrange Plus Remap and Cell-Centered Direct Eulerian Godunov Schemes for Rulerian Shock Hydrodynamics , 2000 .
[15] Mikhail Shashkov,et al. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1574 Closure models for multimaterial cells in arbitrary Lagrangian–Eulerian hydrocodes ‡ , 2022 .
[16] L YoungsD,et al. Time-dependent multi-material flow with large fluid distortion. , 1982 .
[17] J. Tukey,et al. Generalized “sandwich” theorems , 1942 .
[18] Mikhail Shashkov,et al. Multi-material remap for staggered discretization , 2009 .
[19] E. Puckett,et al. Second-Order Accurate Volume-of-Fluid Algorithms for Tracking Material Interfaces , 2013 .
[20] P. Woodward,et al. SLIC (Simple Line Interface Calculation) , 1976 .
[21] Mikhail Shashkov,et al. Formulations of Artificial Viscosity for Multi-dimensional Shock Wave Computations , 1998 .
[22] Raphaël Loubère,et al. Material order‐independent interface reconstruction using power diagrams , 2008 .
[23] Hyung Taek Ahn,et al. Multi-material interface reconstruction on generalized polyhedral meshes , 2007, J. Comput. Phys..
[24] S. Zaleski,et al. DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .
[25] Len G. Margolin,et al. Second-order sign-preserving conservative interpolation (remapping) on general grids , 2003 .
[26] John K. Dukowicz,et al. Vorticity errors in multidimensional Lagrangian codes , 1992 .
[27] Hiroshi Imai,et al. Voronoi Diagram in the Laguerre Geometry and its Applications , 1985, SIAM J. Comput..
[28] L. Sedov. Similarity and Dimensional Methods in Mechanics , 1960 .
[29] W. Rider,et al. Reconstructing Volume Tracking , 1998 .
[30] Mikhail J. Shashkov,et al. Reconstruction of multi-material interfaces from moment data , 2008, J. Comput. Phys..
[31] Rao V. Garimella,et al. Interface Reconstruction in Multi-fluid, Multi-phase Flow Simulations , 2005, IMR.
[32] D. Durran. Numerical Methods for Fluid Dynamics , 2010 .