Integrating AlN with GdN Thin Films in an in Situ CVD Process: Influence on the Oxidation and Crystallinity of GdN.

The application potential of rare earth nitride (REN) materials has been limited due to their high sensitivity to air and moisture leading to facile oxidation upon exposure to ambient conditions. For the growth of device quality films, physical vapor deposition methods, such as molecular beam epitaxy, have been established in the past. In this regard, aluminum nitride (AlN) has been employed as a capping layer to protect the functional gadolinium nitride (GdN) from interaction with the atmosphere. In addition, an AlN buffer was employed between a silicon substrate and GdN serving as a seeding layer for epitaxial growth. In pursuit to grow high-quality GdN thin films by chemical vapor deposition (CVD), this successful concept is transferred to an in situ CVD process. Thereby, AlN thin films are included step-wise in the stack starting with Si/GdN/AlN structures to realize long-term stability of the oxophilic GdN layer. As a second strategy, a Si/AlN/GdN/AlN stacked structure was grown, where the additional buffer layer serves as the seeding layer to promote crystalline GdN growth. In addition, chemical interaction between GdN and the Si substrate can be prevented by spatial segregation. The stacked structures grown for the first time with a continuous CVD process were subjected to a detailed investigation in terms of structure, morphology, and composition, revealing an improved GdN purity with respect to earlier grown CVD thin films. Employing thin AlN buffer layers, the crystallinity of the GdN films on Si(100) could additionally be significantly enhanced. Finally, the magnetic properties of the fabricated stacks were evaluated by performing superconducting quantum interference device measurements, both of the as-deposited films and after exposure to ambient conditions, suggesting superparamagnetism of ferromagnetic GdN grains. The consistency of the magnetic properties precludes oxidation of the REN material due to the amorphous AlN capping layer.

[1]  Y. Cordier,et al.  Molecular beam epitaxy of ferromagnetic epitaxial GdN thin films , 2014 .

[2]  M. Mayer Improved physics in SIMNRA 7 , 2014 .

[3]  T. Kita,et al.  Electronic transitions in GdN band structure , 2014 .

[4]  T. Kita,et al.  Giant optical splitting in the spin-states assisting a sharp magnetic switching in GdN thin films , 2013 .

[5]  T. Kita,et al.  Tuning optical and ferromagnetic properties of thin GdN films by nitrogen-vacancy centers , 2013 .

[6]  E. Anton,et al.  Spin/orbit moment imbalance in the near-zero moment ferromagnetic semiconductor SmN , 2013, 1301.6829.

[7]  Cristian G. Hrib,et al.  Homoleptic gadolinium amidinates as precursors for MOCVD of oriented gadolinium nitride (GdN) thin films. , 2013, Inorganic chemistry.

[8]  Y. Cordier,et al.  Role of magnetic polarons in ferromagnetic GdN , 2012, 1210.3441.

[9]  N. Plank,et al.  Rare-earth mononitrides , 2012, 1208.2410.

[10]  N. Plank,et al.  The influence of nitrogen vacancies on the magnetic behaviour of rare-earth nitrides , 2012 .

[11]  T. Kita,et al.  Study on spin-splitting phenomena in the band structure of GdN , 2012 .

[12]  S. M. Durbin,et al.  Epitaxial growth and properties of GdN, EuN and SmN thin films , 2012 .

[13]  M. Mills,et al.  Epitaxial ferromagnetic nanoislands of cubic GdN in hexagonal GaN , 2012, 1203.0028.

[14]  R. Odedra,et al.  Gadolinium nitride films deposited using a PEALD based process , 2012 .

[15]  M. Schilfgaarde,et al.  Electronic structure of EuN: Growth, spectroscopy, and theory , 2011 .

[16]  M. Blamire,et al.  Spin-filter Josephson junctions. , 2011, Nature materials.

[17]  J. Cezar,et al.  Magnetic state of EuN: X-ray magnetic circular dichroism at the EuM4,5andL2,3absorption edges , 2011 .

[18]  O. Wada,et al.  Optical and magnetic properties in epitaxial GdN thin films , 2011 .

[19]  N. Plank,et al.  Enhanced Curie temperature in N-deficient GdN , 2011 .

[20]  A. Ney,et al.  Evaluation of Homoleptic Guanidinate and Amidinate Complexes of Gadolinium and Dysprosium for MOCVD of Rare-Earth Nitride Thin Films , 2011 .

[21]  M. Blamire,et al.  Structural evolution and competing magnetic orders in polycrystalline GdN films , 2011 .

[22]  N. Plank,et al.  Epitaxial growth of GdN on silicon substrate using an AlN buffer layer , 2010 .

[23]  Cristian G. Hrib,et al.  Structural Investigation of Homoleptic Lanthanide(III) Tris(pivalamidinates), [tBuC(NiPr)2]3Ln (Ln = Ce, Eu, Tb) , 2010 .

[24]  C. L. Cheung,et al.  Growth of [100]‐Textured Gadolinium Nitride Films by CVD , 2010 .

[25]  A. Devi,et al.  Homoleptic gadolinium guanidinate: a single source precursor for metal-organic chemical vapor deposition of gadolinium nitride thin films. , 2009, Journal of the American Chemical Society.

[26]  H. Fujioka,et al.  Epitaxial growth of InN films on lattice-matched EuN buffer layers , 2009 .

[27]  S. M. Durbin,et al.  Growth and properties of epitaxial GdN , 2009 .

[28]  A. Gossard,et al.  GdN (1 1 1) heteroepitaxy on GaN (0 0 0 1) by N2 plasma and NH3 molecular beam epitaxy , 2009 .

[29]  H. Trodahl,et al.  Ferromagnetic redshift of the optical gap in GdN , 2007, 0705.2912.

[30]  B. Rauschenbach,et al.  Epitaxial gadolinium nitride thin films , 2007 .

[31]  H. Trodahl,et al.  Ferromagnetic resonance study of GdN thin films with bulk and extended lattice constants , 2006 .

[32]  H. Trodahl,et al.  Semiconducting ground state of GdN thin films , 2006 .

[33]  E. Dartyge,et al.  X-ray magnetic circular dichroism at the Gd L 2 , 3 absorption edges in GdN layers: The influence of lattice expansion , 2006 .

[34]  P. Munroe,et al.  TEM characterisation of GdN thin films , 2006 .

[35]  K. Fauth,et al.  GdN thin films: Bulk and local electronic and magnetic properties , 2005 .

[36]  I. Petrov,et al.  Growth and physical properties of epitaxial CeN layers on MgO(001) , 2003 .

[37]  C. H. Sowers,et al.  Coexistence of magnetism and superconductivity in epitaxial GdN/W/NbN/W (100) and related NbN/W (100) multilayers , 1998 .

[38]  G. Kido,et al.  Magnetic properties of stoichiometric Gd monopnictides , 1997 .

[39]  Claude Bernard,et al.  Deposition of (Ti,Al)N thin films by organometallic chemical vapor deposition: thermodynarnic predictions and experimental results , 1997 .

[40]  Chien,et al.  Proximity effects in superconductor/insulating-ferromagnet NbN/GdN multilayers. , 1996, Physical review letters.

[41]  D. J. Economou,et al.  CHEMICAL VAPOR DEPOSITION OF ALUMINUM AND GALLIUM NITRIDE THIN FILMS FROM METALORGANIC PRECURSORS , 1996 .

[42]  P. Doppelt,et al.  Preparation of aluminum nitride films by low pressure organometallic chemical vapor deposition , 1995 .

[43]  D. Li,et al.  Magnetic properties of ferromagnetic GdN , 1994 .

[44]  R. Gordon,et al.  Atmospheric pressure chemical vapor deposition of aluminum nitride thin films at 200–250 °C , 1991 .

[45]  P. Power,et al.  Structural and spectroscopic characterization of the compounds [Al(NMe2)3]2, [Ga(NMe2)3]2, [(Me2N)2Al{μ-N(H)1-Ad}]2 (1-Ad = 1-adamantanyl) and [{Me(μ-NPh2)Al}2NPh(μ-C6H4)] , 1990 .

[46]  C. Youn,et al.  Microstructural and electrical properties of gadolinium silicide , 1988 .

[47]  F. Hulliger Chapter 33 Rare earth pnictides , 1979 .

[48]  F. Hulliger Magnetic properties of the rare earth pnictides , 1978 .

[49]  A. W. Lawson,et al.  Synthesis and magnetic behavior of GdN , 1975 .

[50]  H. Alperin,et al.  Magnetic Properties and Structure of GdN and GdN1−xOx , 1970 .

[51]  H. Alperin,et al.  MAGNETIC STRUCTURE AND EXCHANGE INTERACTIONS IN CUBIC GADOLINIUM COMPOUNDS. , 1969 .

[52]  G. Busch MAGNETIC PROPERTIES OF RARE-EARTH COMPOUNDS. , 1967 .

[53]  P. Junod,et al.  FERRO- AND METAMAGNETISM OF RARE EARTH COMPOUNDS , 1963 .

[54]  R. Didchenko,et al.  Some electric and magnetic properties of rare earth monosulfides and nitrides , 1963 .

[55]  W. Klemm,et al.  Zur Kenntnis der Nitride der Seltenen Erdmetalle , 1956 .