Tree Adaptive Approximation in the Hierarchical Tensor Format

The hierarchical tensor format allows for the low-parametric representation of tensors even in high dimensions $d$. The efficiency of this representation strongly relies on an appropriate hierarchical splitting of the different directions $1,\ldots,d$ such that the associated ranks remain sufficiently small. This splitting can be represented by a binary tree which is usually assumed to be given. In this paper, we address the question of finding an appropriate tree from a subset of tensor entries without any a priori knowledge on the tree structure. We propose an agglomerative strategy that can be combined with rank-adaptive cross approximation techniques such that tensors can be approximated in the hierarchical format in an entirely black box way. Numerical examples illustrate the potential and the limitations of our approach.

[1]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[2]  Wolfgang Dahmen,et al.  Adaptive Petrov-Galerkin Methods for First Order Transport Equations , 2011, SIAM J. Numer. Anal..

[3]  Sadegh Jokar,et al.  Sparse recovery and Kronecker products , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[4]  Christian Bender,et al.  Least-Squares Monte Carlo for Backward SDEs , 2012 .

[5]  Erich Novak,et al.  The Curse of Dimensionality for Monotone and Convex Functions of Many Variables , 2010, 1011.3680.

[6]  Daniela Rosca,et al.  A New Hybrid Method for Image Approximation Using the Easy Path Wavelet Transform , 2011, IEEE Transactions on Image Processing.

[7]  Simen Kvaal,et al.  Multiconfigurational time-dependent Hartree method to describe particle loss due to absorbing boundary conditions , 2011, 1102.3899.

[8]  Tobias Jahnke,et al.  Error Bound for Piecewise Deterministic Processes Modeling Stochastic Reaction Systems , 2012, Multiscale Model. Simul..

[9]  Erwan Faou,et al.  Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..

[10]  Wolfgang Hackbusch,et al.  Tensorisation of vectors and their efficient convolution , 2011, Numerische Mathematik.

[11]  Wolfgang Dahmen,et al.  Approximation of High-Dimensional Rank One Tensors , 2013, Constructive Approximation.

[12]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[13]  Ianwei,et al.  Compressive Video Sampling with Approximate Message Passing Decoding , 2011 .

[14]  Winfried Sickel,et al.  Best m-Term Approximation and Sobolev–Besov Spaces of Dominating Mixed Smoothness—the Case of Compact Embeddings , 2012 .

[15]  E. Tyrtyshnikov,et al.  TT-cross approximation for multidimensional arrays , 2010 .

[16]  Harry Yserentant,et al.  The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces , 2012, Numerische Mathematik.

[17]  E. Novak,et al.  On the power of function values for the approximation problem in various settings , 2010, 1011.3682.

[18]  Wolfgang Dahmen,et al.  Fast high-dimensional approximation with sparse occupancy trees , 2011, J. Comput. Appl. Math..

[19]  M. Hansen,et al.  n-term approximation rates and Besov regularity for elliptic PDEs on polyhedral domains , 2012 .

[20]  Armin Iske,et al.  Optimally Sparse Image Representation by the Easy Path Wavelet Transform , 2012, Int. J. Wavelets Multiresolution Inf. Process..

[21]  Stephan Dahlke,et al.  Spatial Besov regularity for semilinear stochastic partial differential equations on bounded Lipschitz domains , 2012, Int. J. Comput. Math..

[22]  Reinhold Schneider,et al.  Error estimates for the Coupled Cluster method , 2013 .

[23]  Tobias Jahnke,et al.  Solving chemical master equations by adaptive wavelet compression , 2010, J. Comput. Phys..

[24]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[25]  Felix Lindner,et al.  Singular behavior of the solution to the stochastic heat equation on a polygonal domain , 2013, Stochastic Partial Differential Equations: Analysis and Computations.

[26]  Wolfgang Dahmen,et al.  Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations , 2013, Foundations of Computational Mathematics.

[27]  Steffen Dereich,et al.  Multilevel Monte Carlo algorithms for L\'{e}vy-driven SDEs with Gaussian correction , 2011, 1101.1369.

[28]  Steffen Dereich,et al.  A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations , 2011 .

[29]  P. Maass,et al.  An analysis of electrical impedance tomography with applications to Tikhonov regularization , 2012 .

[30]  Reinhold Schneider,et al.  Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations , 2015 .

[31]  A. Uschmajew,et al.  LOCAL CONVERGENCE OF ALTERNATING SCHEMES FOR OPTIMIZATION OF CONVEX PROBLEMS IN THE TT FORMAT , 2011 .

[32]  Lars Grasedyck,et al.  Polynomial Approximation in Hierarchical Tucker Format by Vector – Tensorization , 2010 .

[33]  Wang-Q Lim,et al.  Image Separation Using Shearlets , 2011 .

[34]  Christian Bender,et al.  Error Criteria for Numerical Solutions of Backward SDEs , 2010 .

[35]  D. Crisan,et al.  Robust filtering: Correlated noise and multidimensional observation , 2012, 1201.1858.

[36]  Michael Griebel,et al.  An Adaptive Sparse Grid Semi-Lagrangian Scheme for First Order Hamilton-Jacobi Bellman Equations , 2012, Journal of Scientific Computing.

[37]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[38]  Wolfgang Hackbusch,et al.  An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples , 2011, Comput. Methods Appl. Math..

[39]  Gitta Kutyniok,et al.  Data Separation by Sparse Representations , 2011, Compressed Sensing.

[40]  Klaus Ritter,et al.  Derandomization of the Euler scheme for scalar stochastic differential equations , 2012, J. Complex..

[41]  Armin Iske,et al.  On Groupoid C∗-Algebras, Persistent Homology and Time-Frequency Analysis , 2011 .

[42]  P. Maass,et al.  Function spaces and optimal currents in impedance tomography , 2011 .

[43]  G. Teschke,et al.  Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints , 2010 .

[44]  Lutz Kämmerer,et al.  Interpolation lattices for hyperbolic cross trigonometric polynomials , 2012, J. Complex..

[45]  Steffen Dereich,et al.  Foundations of Computational Mathematics, Budapest 2011: On the Complexity of Computing Quadrature Formulas for SDEs , 2012 .

[46]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[47]  Henryk Wozniakowski,et al.  The curse of dimensionality for numerical integration of smooth functions , 2012, Math. Comput..

[48]  Lutz Kämmerer,et al.  On the stability of the hyperbolic cross discrete Fourier transform , 2011, Numerische Mathematik.

[49]  Lutz Kämmerer Reconstructing hyperbolic cross trigonometric polynomials by sampling along generated sets , 2012 .

[50]  Stephan Dahlke,et al.  An adaptive wavelet method for parameter identification problems in parabolic partial differential equations , 2022 .

[51]  Wang-Q Lim,et al.  Shearlets on Bounded Domains , 2010, 1007.3039.

[52]  Erich Novak,et al.  Optimal approximation of elliptic problems by linear and nonlinear mappings IV: Errors in L2 and other norms , 2004, J. Complex..

[53]  Reinhold Schneider,et al.  An analysis for the DIIS acceleration method used in quantum chemistry calculations , 2011 .

[54]  E. Ullmann,et al.  Preconditioning Stochastic Galerkin Saddle Point Problems , 2022 .

[55]  Hermann G. Matthies,et al.  Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats , 2014, Comput. Math. Appl..

[56]  H. Yserentant,et al.  On the Complexity of the Electronic Schrödinger Equation , 2022 .

[57]  K. Ritter,et al.  On the convergence analysis of Rothe ’ s method , 2022 .

[58]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[59]  Wolfgang Dahmen,et al.  Compressed Sensing and Electron Microscopy , 2010 .

[60]  Klaus Ritter,et al.  A Local Refinement Strategy for Constructive Quantization of Scalar SDEs , 2013, Found. Comput. Math..

[61]  J. Ballani,et al.  Black box approximation of tensors in hierarchical Tucker format , 2013 .

[62]  Dajana Conte,et al.  Mathematical Modelling and Numerical Analysis an Error Analysis of the Multi-configuration Time-dependent Hartree Method of Quantum Dynamics , 2022 .

[63]  D. Rudolf,et al.  Explicit error bounds for Markov chain Monte Carlo , 2011, 1108.3201.

[64]  G. Teschke,et al.  Inversion of the noisy Radon transform on SO(3) by Gabor frames and sparse recovery principles , 2011 .

[65]  Markus Hansen,et al.  On tensor products of quasi-Banach spaces , 2010 .

[66]  G. Teschke,et al.  Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems , 2010 .

[67]  G. Kutyniok,et al.  Irregular Shearlet Frames: Geometry and Approximation Properties , 2010, 1002.2657.

[68]  Konstantin Grella,et al.  Sparse tensor spherical harmonics approximation in radiative transfer , 2011, J. Comput. Phys..

[69]  Stephan Dahlke,et al.  Adaptive Wavelet Schwarz Methods for the Navier-Stokes Equation , 2016 .

[70]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[71]  K. Ritter,et al.  Adaptive Wavelet Methods for Elliptic Stochastic Partial Differential Equations , 2022 .

[72]  Winfried Sickel,et al.  Best m-term approximation and Lizorkin-Triebel spaces , 2011, J. Approx. Theory.

[73]  Fred J. Hickernell,et al.  Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..

[74]  Fred J. Hickernell,et al.  Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..

[75]  Daniel Rudolf,et al.  Error bounds for computing the expectation by Markov chain Monte Carlo , 2009, Monte Carlo Methods Appl..

[76]  Howard C. Elman,et al.  Efficient Iterative Solvers for Stochastic Galerkin Discretizations of Log-Transformed Random Diffusion Problems , 2012, SIAM J. Sci. Comput..

[77]  S. Dereich,et al.  Constructive quantization: Approximation by empirical measures , 2011, 1108.5346.

[78]  Winfried Sickel,et al.  Best m-term aproximation and tensor product of Sobolev and Besov spaces-the case of non-compact embeddings , 2010 .

[79]  Reinhold Schneider,et al.  Numerical analysis of Gaussian approximations in quantum chemistry , 2012 .

[80]  Wolfgang Dahmen,et al.  Classification algorithms using adaptive partitioning , 2014, 1411.0839.

[81]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[82]  K. Ritter,et al.  Variable Subspace Sampling and Multi-level Algorithms , 2009 .

[83]  R. Schneider,et al.  The Alternating Linear Scheme for Tensor Optimisation in the TT Format , 2022 .

[84]  Christian Bender,et al.  Dual pricing of multi-exercise options under volume constraints , 2011, Finance Stochastics.

[85]  R. Schilling,et al.  Weak Order for the Discretization of the Stochastic Heat Equation Driven by Impulsive Noise , 2009, 0911.4681.

[86]  Armin Iske,et al.  Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..

[87]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .

[88]  Wang-Q Lim,et al.  Compactly Supported Shearlets , 2010, 1009.4359.

[89]  Thorsten Rohwedder,et al.  The continuous Coupled Cluster formulation for the electronic Schrödinger equation , 2013 .

[90]  Klaus Ritter,et al.  Spatial Besov Regularity for Stochastic Partial Differential Equations on Lipschitz Domains , 2010, 1011.1814.

[91]  Petru A. Cioica,et al.  On the $L_q(L_p)$-regularity and Besov smoothness of stochastic parabolic equations on bounded Lipschitz domains , 2013, 1301.1180.

[92]  Torsten Görner,et al.  Efficient and accurate computation of spherical mean values at scattered center points , 2012 .

[93]  G. Kutyniok,et al.  Construction of Compactly Supported Shearlet Frames , 2010, 1003.5481.

[94]  Stephan Dahlke,et al.  Piecewise tensor product wavelet bases by extensions and approximation rates , 2013, Math. Comput..

[95]  O. Ernst,et al.  ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS , 2011 .

[96]  Reinhold Schneider,et al.  Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..

[97]  Stephan Dahlke,et al.  A note on quarkonial systems and multilevel partition of unity methods , 2013 .

[98]  Hermann G. Matthies,et al.  Efficient Analysis of High Dimensional Data in Tensor Formats , 2012 .

[99]  Karsten Urban,et al.  Adaptive Wavelet Methods on Unbounded Domains , 2012, Journal of Scientific Computing.

[100]  André Uschmajew,et al.  Local Convergence of the Alternating Least Squares Algorithm for Canonical Tensor Approximation , 2012, SIAM J. Matrix Anal. Appl..

[101]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[102]  M. Fornasier,et al.  Multilevel Preconditioning for Adaptive Sparse Optimization , 2009 .

[103]  Wolfgang Dahmen,et al.  Adaptive Petrov-Galerkin methods for first order transport equations , 2011 .

[104]  Winfried Sickel,et al.  On Besov regularity of solutions to nonlinear elliptic partial differential equations , 2020, Nonlinear Analysis.

[105]  Henryk Wozniakowski,et al.  Discontinuous information in the worst case and randomized settings , 2011, 1106.2945.

[106]  Armin Iske,et al.  Curvature analysis of frequency modulated manifolds in dimensionality reduction , 2011 .

[107]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[108]  Karsten Urban,et al.  On Wavelet-Galerkin Methods for Semilinear Parabolic Equations with Additive Noise , 2013 .

[109]  Armin Iske,et al.  Optimal representation of piecewise Hölder smooth bivariate functions by the Easy Path Wavelet Transform , 2013, J. Approx. Theory.

[110]  Harry Yserentant,et al.  The mixed regularity of electronic wave functions multiplied by explicit correlation factors , 2011 .

[111]  Reinhold Schneider,et al.  On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.

[112]  Wolfgang Dahmen,et al.  DOUBLE GREEDY ALGORITHMS: REDUCED BASIS METHODS FOR TRANSPORT DOMINATED PROBLEMS ∗ , 2013, 1302.5072.

[113]  Elisabeth Ullmann,et al.  Stochastic Galerkin Matrices , 2010, SIAM J. Matrix Anal. Appl..

[114]  Wolfgang Dahmen,et al.  Adaptivity and variational stabilization for convection-diffusion equations∗ , 2012 .

[115]  Reinhold Schneider,et al.  Optimization problems in contracted tensor networks , 2011, Comput. Vis. Sci..

[116]  Tobias Jahnke,et al.  On Reduced Models for the Chemical Master Equation , 2011, Multiscale Model. Simul..

[117]  Denis Belomestny,et al.  Multilevel dual approach for pricing American style derivatives , 2012, Finance Stochastics.

[118]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[119]  Christian Bender,et al.  Primal and Dual Pricing of Multiple Exercise Options in Continuous Time , 2011, SIAM J. Financial Math..

[120]  Gerlind Plonka-Hoch,et al.  Curvelet-Wavelet Regularized Split Bregman Iteration for Compressed Sensing , 2011, Int. J. Wavelets Multiresolution Inf. Process..

[121]  Andreas Zeiser,et al.  Wavelet Approximation in Weighted Sobolev Spaces of Mixed Order with Applications to the Electronic Schrödinger Equation , 2012 .

[122]  Christian Bender,et al.  A Posteriori Estimates for Backward SDEs , 2013, SIAM/ASA J. Uncertain. Quantification.

[123]  Michael Gnewuch,et al.  On weighted Hilbert spaces and integration of functions of infinitely many variables , 2014, J. Complex..

[124]  Gabriele Steidl,et al.  Shearlet Coorbit Spaces: Compactly Supported Analyzing Shearlets, Traces and Embeddings , 2011 .

[125]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..