Adaptive computations using material forces and residual-based error estimators on quadtree meshes
暂无分享,去创建一个
[1] B.,et al. Natural Neighbor Galerkin Methods , 2001 .
[2] J. D. Eshelby. The elastic energy-momentum tensor , 1975 .
[3] N. Sukumar. Construction of polygonal interpolants: a maximum entropy approach , 2004 .
[4] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[5] Mark Meyer,et al. Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.
[6] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[7] Brian Moran,et al. Crack tip and associated domain integrals from momentum and energy balance , 1987 .
[8] Jonathan A. Dantzig,et al. An adaptive mesh refinement scheme for solidification problems , 1996 .
[9] M. Gunzburger,et al. Meshfree, probabilistic determination of point sets and support regions for meshless computing , 2002 .
[10] N. Goldenfeld,et al. Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.
[11] Alireza Tabarraei,et al. APPLICATION OF POLYGONAL FINITE ELEMENTS IN LINEAR ELASTICITY , 2006 .
[12] M. Floater. Mean value coordinates , 2003, Computer Aided Geometric Design.
[13] William H. Press,et al. Numerical Recipes: FORTRAN , 1988 .
[14] Peter Hansbo,et al. Adaptive strategies and error control for computing material forces in fracture mechanics , 2004 .
[15] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[16] M. Ainsworth,et al. Aspects of an adaptive hp-finite element method : Adaptive strategy, conforming approximation and efficient solvers , 1997 .
[17] W. Fuyu,et al. Factors influencing output non-linearity error of a high-precision load sensor and the error calculation , 1987 .
[18] Elías Cueto,et al. A natural neighbour Galerkin method with quadtree structure , 2005 .
[19] P. Lancaster,et al. Surfaces generated by moving least squares methods , 1981 .
[20] W. Press,et al. Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .
[21] Gautam Dasgupta,et al. Integration within Polygonal Finite Elements , 2003 .
[22] Elisabeth Anna Malsch,et al. Interpolations for temperature distributions: a method for all non-concave polygons , 2004 .
[23] M. Gurtin,et al. Configurational Forces as Basic Concepts of Continuum Physics , 1999 .
[24] Gérard A. Maugin,et al. Material Inhomogeneities in Elasticity , 2020 .
[25] Qiang Du,et al. Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..
[26] R. Verfürth,et al. Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .
[27] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[28] Paul Steinmann,et al. Mechanics of Material Forces , 2005 .
[29] P. Hansbo,et al. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .
[30] Petr Krysl,et al. Object‐oriented hierarchical mesh refinement with CHARMS , 2004 .
[31] B. Moran,et al. Natural neighbour Galerkin methods , 2001 .
[32] Alireza Tabarraei,et al. Adaptive computations on conforming quadtree meshes , 2005 .
[33] Norman H. Christ,et al. Weights of links and plaquettes in a random lattice , 1982 .
[34] Hiroshi Tada,et al. The stress analysis of cracks handbook , 2000 .
[35] Shuodao Wang,et al. A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .
[36] I. Babuska,et al. The finite element method and its reliability , 2001 .
[37] Gautam Dasgupta,et al. Interpolants within Convex Polygons: Wachspress' Shape Functions , 2003 .
[38] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[39] William H. Press,et al. Numerical recipes in C. The art of scientific computing , 1987 .
[40] Eitan Grinspun,et al. Natural hierarchical refinement for finite element methods , 2003 .
[41] R. Mueller,et al. Use of material forces in adaptive finite element methods , 2004 .
[42] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[43] P. Bar-Yoseph,et al. Mechanically based models: Adaptive refinement for B‐spline finite element , 2003 .
[44] R. D. Wood,et al. Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .
[45] Peter Hansbo,et al. A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.
[46] Kai Hormann,et al. Barycentric coordinates for arbitrary polygons in the plane , 2005 .
[47] J. D. Eshelby,et al. The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[48] N. Sukumar,et al. Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .
[49] Paul Steinmann,et al. Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting , 2000 .
[50] R. Mueller,et al. On material forces and finite element discretizations , 2002 .