Adaptive computations using material forces and residual-based error estimators on quadtree meshes

Quadtree is a hierarchical data structure that is well-suited for h-adaptive mesh refinement. Due to the presence of hanging nodes, classical shape functions are non-conforming on quadtree meshes. In this paper, we use natural neighbor basis functions to construct conforming interpolants on quadtree meshes. To this end, the recently proposed construction of polygonal basis functions is adapted to quadtree elements. A fast technique for calculating stiffness matrix on quadtree meshes is introduced. Residual-based error estimators and material force technique are used to estimate the error on quadtree meshes. The performance of the adaptive technique is demonstrated through the solution of linear and nonlinear boundary-value problems.

[1]  B.,et al.  Natural Neighbor Galerkin Methods , 2001 .

[2]  J. D. Eshelby The elastic energy-momentum tensor , 1975 .

[3]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[4]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[5]  Mark Meyer,et al.  Generalized Barycentric Coordinates on Irregular Polygons , 2002, J. Graphics, GPU, & Game Tools.

[6]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[7]  Brian Moran,et al.  Crack tip and associated domain integrals from momentum and energy balance , 1987 .

[8]  Jonathan A. Dantzig,et al.  An adaptive mesh refinement scheme for solidification problems , 1996 .

[9]  M. Gunzburger,et al.  Meshfree, probabilistic determination of point sets and support regions for meshless computing , 2002 .

[10]  N. Goldenfeld,et al.  Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.

[11]  Alireza Tabarraei,et al.  APPLICATION OF POLYGONAL FINITE ELEMENTS IN LINEAR ELASTICITY , 2006 .

[12]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[13]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[14]  Peter Hansbo,et al.  Adaptive strategies and error control for computing material forces in fracture mechanics , 2004 .

[15]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[16]  M. Ainsworth,et al.  Aspects of an adaptive hp-finite element method : Adaptive strategy, conforming approximation and efficient solvers , 1997 .

[17]  W. Fuyu,et al.  Factors influencing output non-linearity error of a high-precision load sensor and the error calculation , 1987 .

[18]  Elías Cueto,et al.  A natural neighbour Galerkin method with quadtree structure , 2005 .

[19]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[20]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[21]  Gautam Dasgupta,et al.  Integration within Polygonal Finite Elements , 2003 .

[22]  Elisabeth Anna Malsch,et al.  Interpolations for temperature distributions: a method for all non-concave polygons , 2004 .

[23]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[24]  Gérard A. Maugin,et al.  Material Inhomogeneities in Elasticity , 2020 .

[25]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[26]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[27]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[28]  Paul Steinmann,et al.  Mechanics of Material Forces , 2005 .

[29]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[30]  Petr Krysl,et al.  Object‐oriented hierarchical mesh refinement with CHARMS , 2004 .

[31]  B. Moran,et al.  Natural neighbour Galerkin methods , 2001 .

[32]  Alireza Tabarraei,et al.  Adaptive computations on conforming quadtree meshes , 2005 .

[33]  Norman H. Christ,et al.  Weights of links and plaquettes in a random lattice , 1982 .

[34]  Hiroshi Tada,et al.  The stress analysis of cracks handbook , 2000 .

[35]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[36]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[37]  Gautam Dasgupta,et al.  Interpolants within Convex Polygons: Wachspress' Shape Functions , 2003 .

[38]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[39]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[40]  Eitan Grinspun,et al.  Natural hierarchical refinement for finite element methods , 2003 .

[41]  R. Mueller,et al.  Use of material forces in adaptive finite element methods , 2004 .

[42]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[43]  P. Bar-Yoseph,et al.  Mechanically based models: Adaptive refinement for B‐spline finite element , 2003 .

[44]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[45]  Peter Hansbo,et al.  A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.

[46]  Kai Hormann,et al.  Barycentric coordinates for arbitrary polygons in the plane , 2005 .

[47]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[48]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[49]  Paul Steinmann,et al.  Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting , 2000 .

[50]  R. Mueller,et al.  On material forces and finite element discretizations , 2002 .