Explicit upper bounds for the spectral distance of two trace class operators

Abstract Given two trace class operators A and B on a separable Hilbert space we provide an upper bound for the Hausdorff distance of their spectra involving only the distance of A and B in operator norm and the singular values of A and B. By specifying particular asymptotics of the singular values our bound reproduces or improves existing bounds for the spectral distance. The proof is based on lower and upper bounds for determinants of trace class operators of independent interest.

[1]  O. Bandtlow,et al.  Eigenvalue decay of operators on harmonic function spaces , 2009, 0903.0865.

[2]  Barry Simon,et al.  Notes on infinite determinants of Hilbert space operators , 1977 .

[3]  O. Bandtlow,et al.  Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions , 2008, 0802.1638.

[4]  On continuity of spectra in norm ideals , 1985 .

[5]  M. A. Kaashoek,et al.  Classes of Linear Operators Vol. I , 1990 .

[6]  Alexander Ostrowski,et al.  Mathematische Miszellen XXVII. Über die Stetigkeit von charakteristischen Wurzeln in Abhängigkeit von den Matrizenelementen , 1983 .

[7]  M. Gil' Resolvents of operators inverse to Schatten–von Neumann ones , 2014 .

[8]  Estimates for the spectrum near algebraic elements , 2000 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  Michael I. Gil Operator Functions and Localization of Spectra , 2003 .

[11]  Counterexample to a conjecture of Elsner on the spectral variation of matrices , 2002 .

[12]  O. Bandtlow Estimates for norms of resolvents and an application to the perturbation of spectra , 2004 .

[13]  ’. MichaelGil Norm estimates for resolvents of non-selfadjoint operators having Hilbert-Schmidt inverse ones , 2012 .

[14]  L. Elsner An optimal bound for the spectral variation of two matrices , 1985 .

[15]  I. Gohberg,et al.  Classes of Linear Operators , 1990 .

[16]  P. Henrici Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices , 1962 .

[17]  O. Bandtlow Resolvent Estimates for Operators Belonging to Exponential Classes , 2008, 0809.3385.

[18]  J. D. Newburgh The variation of spectra , 1951 .

[19]  Eigenvalues of Integral Operators Defined by Analytic Kernels , 1984 .