Explicit upper bounds for the spectral distance of two trace class operators
暂无分享,去创建一个
[1] O. Bandtlow,et al. Eigenvalue decay of operators on harmonic function spaces , 2009, 0903.0865.
[2] Barry Simon,et al. Notes on infinite determinants of Hilbert space operators , 1977 .
[3] O. Bandtlow,et al. Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions , 2008, 0802.1638.
[4] On continuity of spectra in norm ideals , 1985 .
[5] M. A. Kaashoek,et al. Classes of Linear Operators Vol. I , 1990 .
[6] Alexander Ostrowski,et al. Mathematische Miszellen XXVII. Über die Stetigkeit von charakteristischen Wurzeln in Abhängigkeit von den Matrizenelementen , 1983 .
[7] M. Gil'. Resolvents of operators inverse to Schatten–von Neumann ones , 2014 .
[8] Estimates for the spectrum near algebraic elements , 2000 .
[9] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[10] Michael I. Gil. Operator Functions and Localization of Spectra , 2003 .
[11] Counterexample to a conjecture of Elsner on the spectral variation of matrices , 2002 .
[12] O. Bandtlow. Estimates for norms of resolvents and an application to the perturbation of spectra , 2004 .
[13] ’. MichaelGil. Norm estimates for resolvents of non-selfadjoint operators having Hilbert-Schmidt inverse ones , 2012 .
[14] L. Elsner. An optimal bound for the spectral variation of two matrices , 1985 .
[15] I. Gohberg,et al. Classes of Linear Operators , 1990 .
[16] P. Henrici. Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices , 1962 .
[17] O. Bandtlow. Resolvent Estimates for Operators Belonging to Exponential Classes , 2008, 0809.3385.
[18] J. D. Newburgh. The variation of spectra , 1951 .
[19] Eigenvalues of Integral Operators Defined by Analytic Kernels , 1984 .