Partially Functional Outer-Arm Dynein in a Novel Chlamydomonas Mutant Expressing a Truncated γ Heavy Chain

ABSTRACT The outer dynein arm of Chlamydomonas flagella contains three heavy chains (α, β, and γ), each of which exhibits motor activity. How they assemble and cooperate is of considerable interest. Here we report the isolation of a novel mutant, oda2-t, whose γ heavy chain is truncated at about 30% of the sequence. While the previously isolated γ chain mutant oda2 lacks the entire outer arm, oda2-t retains outer arms that contain α and β heavy chains, suggesting that the N-terminal sequence (corresponding to the tail region) is necessary and sufficient for stable outer-arm assembly. Thin-section electron microscopy and image analysis localize the γ heavy chain to a basal region of the outer-arm image in the axonemal cross section. The motility of oda2-t is lower than that of the wild type and oda11 (lacking the α heavy chain) but higher than that of oda2 and oda4-s7 (lacking the motor domain of the β heavy chain). Thus, the outer-arm dynein lacking the γ heavy-chain motor domain is partially functional. The availability of mutants lacking individual heavy chains should greatly facilitate studies on the structure and function of the outer-arm dynein.

[1]  Hitoshi Sakakibara,et al.  Chlamydomonas outer arm dynein alters conformation in response to Ca2+. , 2007, Molecular biology of the cell.

[2]  Hitoshi Sakakibara,et al.  The architecture of outer dynein arms in situ. , 2007, Journal of molecular biology.

[3]  K. Hill,et al.  Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement , 2007, Journal of Cell Science.

[4]  N. Hirokawa,et al.  Three-dimensional structures of the flagellar dynein–microtubule complex by cryoelectron microscopy , 2007, The Journal of cell biology.

[5]  J. McIntosh,et al.  The Molecular Architecture of Axonemes Revealed by Cryoelectron Tomography , 2006, Science.

[6]  Johanna Buisson,et al.  Conserved and specific functions of axoneme components in trypanosome motility , 2006, Journal of Cell Science.

[7]  M. Hirono,et al.  An Axonemal Dynein Particularly Important for Flagellar Movement at High Viscosity , 2005, Journal of Biological Chemistry.

[8]  G. Pazour,et al.  Differential light chain assembly influences outer arm dynein motor function. , 2005, Molecular biology of the cell.

[9]  S. King,et al.  Design and regulation of the AAA+ microtubule motor dynein. , 2004, Journal of structural biology.

[10]  M. M. Mader,et al.  Flagellar quiescence in Chlamydomonas: Characterization and defective quiescence in cells carrying sup-pf-1 and sup-pf-2 outer dynein arm mutations. , 2004, Cell motility and the cytoskeleton.

[11]  S. King,et al.  Calcium Regulates ATP-sensitive Microtubule Binding by Chlamydomonas Outer Arm Dynein* , 2003, Journal of Biological Chemistry.

[12]  R. Kamiya Analysis of cell vibration for assessing axonemal motility in Chlamydomonas. , 2000, Methods.

[13]  R. Kamiya,et al.  Vigorous beating of Chlamydomonas axonemes lacking central pair/radial spoke structures in the presence of salts and organic compounds. , 2000, Cell motility and the cytoskeleton.

[14]  E. O'Toole,et al.  Insights into the structural organization of the I1 inner arm dynein from a domain analysis of the 1beta dynein heavy chain. , 2000, Molecular biology of the cell.

[15]  R. Patel-King,et al.  Light chain 1 from the Chlamydomonas outer dynein arm is a leucine-rich repeat protein associated with the motor domain of the gamma heavy chain. , 1999, Biochemistry.

[16]  H. Sakakibara,et al.  Translocation of microtubules caused by the alphabeta, beta and gamma outer arm dynein subparticles of Chlamydomonas. , 1998, Journal of cell science.

[17]  R. Patel-King,et al.  A Chlamydomonas Homologue of the Putative Murine t Complex Distorter Tctex-2 Is an Outer Arm Dynein Light Chain , 1997, The Journal of cell biology.

[18]  E. O'Toole,et al.  The sup-pf-2 mutations of Chlamydomonas alter the activity of the outer dynein arms by modification of the gamma-dynein heavy chain , 1996, The Journal of cell biology.

[19]  P. Lefebvre,et al.  PF16 encodes a protein with armadillo repeats and localizes to a single microtubule of the central apparatus in Chlamydomonas flagella , 1996, The Journal of cell biology.

[20]  R. Patel-King,et al.  Identification of a Ca(2+)-binding light chain within Chlamydomonas outer arm dynein. , 1995, Journal of cell science.

[21]  P. Lefebvre,et al.  Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. , 1993, Genetics.

[22]  H. Sakakibara,et al.  A Chlamydomonas outer arm dynein mutant with a truncated beta heavy chain , 1993, The Journal of cell biology.

[23]  R. Kamiya,et al.  Translocation and rotation of microtubules caused by multiple species of Chlamydomonas inner-arm dynein , 1992 .

[24]  W. Sale,et al.  The alpha subunit of sea urchin sperm outer arm dynein mediates structural and rigor binding to microtubules , 1992, The Journal of cell biology.

[25]  S. Takada,et al.  Three-headed outer arm dynein from Chlamydomonas that can functionally combine with outer-arm-missing axonemes. , 1992, Journal of Biochemistry (Tokyo).

[26]  H. Sakakibara,et al.  A Chlamydomonas outer arm dynein mutant missing the alpha heavy chain , 1991, The Journal of cell biology.

[27]  R. Kamiya,et al.  Strikingly low ATPase activities in flagellar axonemes of a Chlamydomonas mutant missing outer dynein arms. , 1990, European journal of biochemistry.

[28]  R. Kamiya Mutations at twelve independent loci result in absence of outer dynein arms in Chylamydomonas reinhardtii , 1988, The Journal of cell biology.

[29]  M. Frohman,et al.  Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. Witman,et al.  Structure of the gamma heavy chain of the outer arm dynein from Chlamydomonas flagella , 1988, The Journal of cell biology.

[31]  W. Sale,et al.  Isolated beta-heavy chain subunit of dynein translocates microtubules in vitro , 1988, The Journal of cell biology.

[32]  U. Goodenough,et al.  High-pressure liquid chromatography fractionation of Chlamydomonas dynein extracts and characterization of inner-arm dynein subunits. , 1987, Journal of molecular biology.

[33]  D. Weeks,et al.  A small-scale five-hour procedure for isolating multiple samples of CsCl-purified DNA: application to isolations from mammalian, insect, higher plant, algal, yeast, and bacterial sources. , 1986, Analytical biochemistry.

[34]  J. Rosenbaum,et al.  A motile Chlamydomonas flagellar mutant that lacks outer dynein arms , 1985, The Journal of cell biology.

[35]  R. Kamiya,et al.  A mutant of Chlamydomonas reinhardtii that lacks the flagellar outer dynein arm but can swim. , 1985, Journal of cell science.

[36]  U. Goodenough,et al.  Structural comparison of purified dynein proteins with in situ dynein arms. , 1984, Journal of molecular biology.

[37]  K.,et al.  Subfractionation of Chlamydomonas 18 S dynein into two unique subunits containing ATPase activity. , 1984, The Journal of biological chemistry.

[38]  G. Witman,et al.  Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella , 1983, The Journal of cell biology.

[39]  H. Ishikawa,et al.  ATP-dependent structural changes of the outer dynein arm in Tetrahymena cilia: a freeze-etch replica study , 1983, The Journal of cell biology.

[40]  K. Johnson,et al.  Structure and molecular weight of the dynein ATPase , 1983, The Journal of cell biology.

[41]  U. Goodenough,et al.  Substructure of the outer dynein arm , 1982, The Journal of cell biology.

[42]  D. Luck,et al.  Suppressor mutations in chlamydomonas reveal a regulatory mechanism for flagellar function , 1982, Cell.

[43]  M. Bessen,et al.  Calcium control of waveform in isolated flagellar axonemes of chlamydomonas , 1980, The Journal of cell biology.

[44]  G. Piperno,et al.  Paralyzed flagella mutants of Chlamydomonas reinhardtii. Defective for axonemal doublet microtubule arms. , 1979, The Journal of biological chemistry.

[45]  I. Gibbons,et al.  A latent adenosine triphosphatase form of dynein 1 from sea urchin sperm flagella. , 1979, The Journal of biological chemistry.

[46]  G. Borisy,et al.  Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. , 1978, Journal of cell science.

[47]  S. King,et al.  Axonemal Dyneins: Assembly, Structure, and Force Generation , 2009 .

[48]  E. H. Harris The Chlamydomonas sourcebook , 2009 .

[49]  R. Kamiya Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. , 2002, International review of cytology.

[50]  H. Sakakibara,et al.  A Chlamydomonas Outer Arm Dynein Mutant with a Truncated Heavy Chain , 2002 .

[51]  H. Sakakibara,et al.  Translocation of microtubules caused by the αβ, β and γ outer arm dynein subparticles of Chlamydomonas , 1998 .

[52]  D. Mitchell,et al.  Sequence analysis of theChlamydomonas reinhardtii flagellar a dynein gene , 1997 .

[53]  G. Witman,et al.  Functional interaction between Chlamydomonas outer arm dynein subunits: the gamma subunit suppresses the ATPase activity of the alpha beta dimer. , 1997 .

[54]  T Yasunaga,et al.  Extensible and object-oriented system Eos supplies a new environment for image analysis of electron micrographs of macromolecules. , 1996, Journal of structural biology.

[55]  C. Wilkerson,et al.  Molecular analysis of the γ heavy chain of Chlamydomonas flagellar outer-arm dynein , 1996 .

[56]  H. Gross,et al.  Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels , 1987 .

[57]  H. tosh,et al.  A Chlamydomonas Outer Arm Dynein Mutant Missing the Te Heavy Chain Materials and Methods , 2022 .