Domain Decomposition for Multiresolution Analysis

This paper describes a method for converting an arbitrary mesh with irregular connectivity to a semi-regular multiresolution representation. A shape image encoding geometric and differential properties of the input model is computed. Standard image processing operations lead to an initial decomposition of the model that conforms to its salient features. A triangulation step performed on the resulting partition in image space, followed by resampling and multiresolution analysis in object space, complete the procedure. The conversion technique is automatic, takes into account surface properties for deriving a base domain, and is computationally efficient as the bulk of the processing is carried out in image space. Besides domain decomposition, our image-based approach to handling geometry may be used in the context of related applications, including model simplification, remeshing, and wireframe generation.

[1]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[2]  Sylvain Petitjean,et al.  A survey of methods for recovering quadrics in triangle meshes , 2002, CSUR.

[3]  A. Murat Tekalp,et al.  Adaptive Bayesian segmentation of color images , 1994, J. Electronic Imaging.

[4]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[5]  John C. Hart,et al.  Seamster: inconspicuous low-distortion texture seam layout , 2002, IEEE Visualization, 2002. VIS 2002..

[6]  J. Hershberger,et al.  Speeding Up the Douglas-Peucker Line-Simplification Algorithm , 1992 .

[7]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[8]  Nabil H. Mustafa,et al.  Hardware-assisted view-dependent map simplification , 2001, SCG '01.

[9]  André Guéziec,et al.  Locally Toleranced Surface Simplification , 1999, IEEE Trans. Vis. Comput. Graph..

[10]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[11]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[12]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[13]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[14]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[15]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[16]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[17]  Marc Levoy,et al.  Fitting smooth surfaces to dense polygon meshes , 1996, SIGGRAPH.

[18]  Hans-Peter Seidel,et al.  A Shrink Wrapping Approach to Remeshing Polygonal Surfaces , 1999, Comput. Graph. Forum.

[19]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[20]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[21]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[22]  Fausto Bernardini,et al.  Cut-and-paste editing of multiresolution surfaces , 2002, SIGGRAPH.

[23]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[24]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[25]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[26]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[27]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[28]  Shokri Z. Selim,et al.  K-Means-Type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[30]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[31]  Takashi Kanai MeshToSS: Converting Subdivision Surfaces from Dense Meshes , 2001, VMV.

[32]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[33]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[34]  Peter Schröder,et al.  Fitting subdivision surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[35]  Henning Biermann,et al.  Approximate Boolean operations on free-form solids , 2001, SIGGRAPH.

[36]  Henning Biermann,et al.  Sharp features on multiresolution subdivision surfaces , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[37]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[38]  Gabriel Taubin,et al.  Space‐Optimized Texture Maps , 2002 .

[39]  Nabil H. Mustafa,et al.  Hardware-Assisted View-Dependent Planar Map Simplification , 2001 .

[40]  Günther Greiner,et al.  Remeshing triangulated surfaces with optimal parameterizations , 2001, Comput. Aided Des..

[41]  Guido Gerig,et al.  Parametrization of Closed Surfaces for 3-D Shape Description , 1995, Comput. Vis. Image Underst..