Finite difference magnetoelastic simulator

We describe an extension of the micromagnetic finite difference simulation software MuMax3 to solve elasto-magneto-dynamical problems. The new module allows for numerical simulations of magnetization and displacement dynamics in magnetostrictive materials and structures, including both direct and inverse magnetostriction. The theoretical background is introduced, and the implementation of the extension is discussed. The magnetoelastic extension of MuMax3 is freely available under the GNU General Public License v3.

[1]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[2]  Dmitri E. Nikonov,et al.  Benchmarking spintronic logic devices based on magnetoelectric oxides , 2014 .

[3]  C. Eom,et al.  Strain Anisotropy and Magnetic Domain Structures in Multiferroic Heterostructures: High-Throughput Finite-Element and Phase-Field Studies , 2019, Acta Materialia.

[4]  J. Bokor,et al.  Bi-directional coupling in strain-mediated multiferroic heterostructures with magnetic domains and domain wall motion , 2018, Scientific Reports.

[5]  I. Young,et al.  Beyond CMOS computing with spin and polarization , 2018 .

[6]  A. Sepulveda,et al.  Voltage induced mechanical/spin wave propagation over long distances , 2017 .

[7]  Incoherent magnetization dynamics in strain mediated switching of magnetostrictive nanomagnets. , 2015, Nanotechnology.

[8]  C. Marrows,et al.  The 2017 Magnetism Roadmap , 2017 .

[9]  K. Jayabal,et al.  Micromechanically motivated constitutive model embedded in two-dimensional polygonal finite element framework for magnetostrictive actuators , 2019, Journal of Applied Physics.

[10]  Ming Liu,et al.  Voltage control of magnetism in multiferroic heterostructures , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Supriyo Bandyopadhyay,et al.  Introduction to spintronics , 2008 .

[12]  C. Adelmann,et al.  Strain coupling optimization in magnetoelectric transducers , 2017, 1712.01351.

[13]  Qingxin Yang,et al.  Eddy Current Loss Effect in Foil Winding of Transformer Based on Magneto-Fluid-Thermal Simulation , 2019, IEEE Transactions on Magnetics.

[14]  B. Van Waeyenberge,et al.  Adaptively time stepping the stochastic Landau-Lifshitz-Gilbert equation at nonzero temperature: Implementation and validation in MuMax3 , 2017, 1709.01682.

[15]  A. Sepulveda,et al.  Modeling of magnetoelastic nanostructures with a fully coupled mechanical-micromagnetic model , 2014, Nanotechnology.

[16]  Trémolet de Lacheisserie,et al.  Magnetostriction : theory and applications of magnetoelasticity , 1993 .

[17]  Lane W. Martin,et al.  Multiferroic and magnetoelectric heterostructures , 2012 .

[18]  Kevin Q. T. Luong,et al.  Modeling of Multiple Dynamics in the Radiation of Bulk Acoustic Wave Antennas , 2020, IEEE Journal on Multiscale and Multiphysics Computational Techniques.

[19]  R. Ramesh,et al.  Advances in magnetoelectric multiferroics , 2019, Nature Materials.

[20]  C. Nan,et al.  On the speed of piezostrain-mediated voltage-driven perpendicular magnetization reversal: a computational elastodynamics-micromagnetic phase-field study , 2017 .

[21]  G. Youssef,et al.  Fully-coupled Computational Modeling of the Dynamic Response of 1-3 Multiferroic Composite Structures , 2021 .

[22]  C. Adelmann,et al.  Micromagnetic simulations of magnetoelastic spin wave excitation in scaled magnetic waveguides , 2017, 1708.06428.

[23]  B. James,et al.  Wave propagation in elastic solids , 1975 .

[24]  R. Ramesh,et al.  Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures , 2010, Advanced materials.

[25]  P. Amiri,et al.  Strain-mediated 180° perpendicular magnetization switching of a single domain multiferroic structure , 2015 .

[26]  T. Miyazaki,et al.  The Physics of Ferromagnetism , 2012 .

[27]  C. Nan,et al.  Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.

[28]  B. Diény,et al.  Review on spintronics: Principles and device applications , 2020, Journal of Magnetism and Magnetic Materials.

[29]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[30]  Bernard Dieny,et al.  The 2014 Magnetism Roadmap , 2014 .

[31]  Christopher S. Lynch,et al.  Electrical control of a single magnetoelastic domain structure on a clamped piezoelectric thin film—analysis , 2014 .

[32]  Supriyo Bandyopadhyay,et al.  Experimental Clocking of Nanomagnets with Strain for Ultralow Power Boolean Logic. , 2014, Nano letters.

[33]  Dmitri E. Nikonov,et al.  Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits , 2015, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[34]  A. Chumak Magnon Spintronics , 2019, Spintronics Handbook: Spin Transport and Magnetism, Second Edition.

[35]  Junyeon Kim,et al.  Spintronic devices for energy-efficient data storage and energy harvesting , 2020, Communications Materials.

[36]  S. Priya,et al.  Composite magnetoelectrics: Materials, structures, and applications , 2015 .

[37]  G. Lawes,et al.  Introduction to magnetoelectric coupling and multiferroic films , 2011 .

[38]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[39]  S. Cabrini,et al.  Controlling nanomagnet magnetization dynamics via magnetoelastic coupling , 2014 .

[40]  H. Fangohr,et al.  Absorbing boundary layers for spin wave micromagnetics , 2017, 1706.03325.

[41]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[42]  V. Petrov,et al.  Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part I: Low frequency and electromechanical resonance ranges , 2010 .

[43]  Pavel Ripka,et al.  Magnetoresistive Sensor Development Roadmap (Non-Recording Applications) , 2019, IEEE Transactions on Magnetics.

[44]  Ricardo Ferreira,et al.  Spintronic Sensors , 2016, Proceedings of the IEEE.

[45]  Harry Chuang,et al.  Recent Progress and Next Directions for Embedded MRAM Technology , 2019, 2019 Symposium on VLSI Technology.

[46]  G. Melkov,et al.  Magnetization Oscillations and Waves , 1996 .

[47]  S. Lepadatu Boris computational spintronics—High performance multi-mesh magnetic and spin transport modeling software , 2020, Journal of Applied Physics.

[48]  Ramamoorthy Ramesh,et al.  Multiferroics and magnetoelectrics: thin films and nanostructures , 2008 .

[49]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[50]  C. Nan,et al.  Fast 180° magnetization switching in a strain-mediated multiferroic heterostructure driven by a voltage , 2016, Scientific Reports.

[51]  Bernard Dieny,et al.  Introduction to Magnetic Random-Access Memory , 2016 .

[52]  Christoph Adelmann,et al.  Opportunities and challenges for spintronics in the microelectronics industry , 2020, Nature Electronics.

[53]  William J. Gallagher,et al.  Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip , 2006, IBM J. Res. Dev..

[54]  V. Petrov,et al.  Modeling of Magnetoelectric Effects in Composites , 2014 .

[55]  Marcel Bauer,et al.  Modern Magnetic Materials Principles And Applications , 2016 .

[56]  Taejoong Song,et al.  Embedded MRAM Macro for eFlash Replacement , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[57]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[58]  C. Adelmann,et al.  Introduction to spin wave computing , 2020, Journal of Applied Physics.

[60]  A. Arockiarajan,et al.  A phenomenological approach to study the nonlinear magnetoelectric (ME) response of ME composites , 2019, Smart Materials and Structures.

[61]  Kang L. Wang,et al.  Non-volatile magnonic logic circuits engineering , 2010, 1012.4768.

[62]  D. Sander,et al.  The correlation between mechanical stress and magnetic anisotropy in ultrathin films , 1999 .

[63]  I. A. Kornev,et al.  Theory of magnetoelectric effects at microwave frequencies in a piezoelectric/magnetostrictive multilayer composite , 2001 .

[64]  V. Petrov,et al.  Magnetoelectric Composites , 2019 .

[65]  V. Petrov,et al.  Present status of theoretical modeling the magnetoelectric effect in magnetostrictive-piezoelectric nanostructures. Part II: Magnetic and magnetoacoustic resonance ranges , 2010 .

[66]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[67]  Manuel Bibes,et al.  Spintronics with multiferroics , 2008 .

[68]  C. Adelmann,et al.  Excitation and propagation of spin waves in non-uniformly magnetized waveguides , 2019, Journal of Physics D: Applied Physics.

[69]  S. Dong,et al.  Recent advancements in magnetoelectric particulate and laminate composites , 2007 .