Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer's disease: a longitudinal observational study

Nick C Fox | Alyssa R. Gonzalez | A. Fagan | J. Morris | K. Blennow | D. Holtzman | V. Buckles | N. Seyfried | J. Chhatwal | S. Salloway | R. Bateman | C. Xiong | A. Goate | B. Ghetti | E. McDade | C. Masters | J. Ringman | M. Senda | B. Snitz | C. Mummery | M. Ewers | R. Perrin | R. Koeppe | K. Mawuenyega | Wendy C. Sigurdson | J. Norton | Qing Wang | Anna Hofmann | H. Zetterberg | N. Graff-Radford | J. Noble | M. Farlow | Charles D Chen | K. Taddei | M. Jucker | J. Hassenstab | N. Mason | Lingyan Ping | T. Benzinger | Erik C.B. Johnson | A. Renton | H. Sohrabi | S. Gardener | C. Laske | C. Haass | N. Franzmeier | M. Suárez-Calvet | B. Feldman | N. Nadkarni | J. Brosch | R. Feederle | G. Day | R. Allegri | Sarah Goldberg | R. Ihara | Jinbin Xu | Ralph M. Martins | B. Nuscher | Austin McCullough | Aylin Dincer | R. Hornbeck | T. Ikeuchi | J. Goldman | C. Jack | J. Levin | E. Morenas-Rodriguez | G. Jerome | Elizabeth M. Herries | S. Berman | G. Kleinberger | E. Weamer | Darcy R. Denner | Oscar L. Lopez | B. Nellgård | Nicolas R. Barthélemy | H. Shimada | Y. Niimi | K. Ishii | K. Kasuga | P. Schofield | Yan Li | O. Preische | Jill Buck | Kathleen Carter | J. Vöglein | Kai Schlepckow | Jennifer C. M. Smith | C. Cruchaga | B. Gordon | H. Chui | Allan Levey | H. Fujii | Antoinette O’Connor | Lisa Cash | M. Graham | Lori Smith | Susanne Gräber-Sultan | Jane Douglas | Jacob Bechara | M. Grilo | W. Brooks | L. Ping | E. Johnson | Lisa M. Häsler | W. Klunk | Patricio Chrem | S. Käser | Deborah Koudelis | S. Brandon | J. Chua | Tamara Donahue | Julia D. Gray | Emily Gremminger | Alexandrer Groves | Cortaiga Hellm | Laura Hoechst-Swisher | Jacob Marsh | Rita Martinez | Kristine E. Shady | Peter Wang | Xiong Xu | Noelia Egido | Akihiko Araki | S. Ikonomović | Riddhi Patira | Courtney A. Bodge | Duc Duong | Sochenda Stephens | Chrismary De La Cruz | Arlene Mejia | Katie Neimeyer | Anna Diffenbacher | Bianca T Esposito | Elke Kuder-Buletta | Akem Nagamatsu | U. Obermüller | C. Karch | S. Flores | Stephanie A. Schultz | Colleen D Fitzpatrick | S. Adams | S. Keefe | Sarah Thompson | E. Franklin | Nelly Friedrichsen | Yakushev Igor | James MountzMD | Colleen D. Fitzpatrick | J. Douglas | Oscar Lopez | S. Thompson | J. Morris | Helena L. Chui | Gina Jerome | J. Morris | James M. Noble | R. Martins | J. Morris | J. Morris | Clifford Jack | Susanne Gräber‐Sultan | C. Xiong | A. O’Connor | Charles Chen | K. Schlepckow

[1]  Douglas Galasko,et al.  Biomarkers of neurodegeneration and glial activation validated in Alzheimer’s disease assessed in longitudinal cerebrospinal fluid samples of Parkinson’s disease , 2021, PloS one.

[2]  K. Blennow,et al.  Microglial activation and tau propagate jointly across Braak stages , 2021, Nature Medicine.

[3]  A. Nimmerjahn,et al.  Microglia use TAM receptors to detect and engulf amyloid beta plaques , 2021, Nature Immunology.

[4]  L. Tan,et al.  Microglia Biomarkers in Alzheimer’s Disease , 2021, Molecular Neurobiology.

[5]  Melanie A. Huntley,et al.  Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology , 2021, Neuron.

[6]  G. Petsko,et al.  Endosomal recycling reconciles the Alzheimer’s disease paradox , 2020, Science Translational Medicine.

[7]  P. Weinreb,et al.  Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life , 2020, Nature Neuroscience.

[8]  C. Haass,et al.  Emerging Microglia Biology Defines Novel Therapeutic Approaches for Alzheimer’s Disease , 2020, Neuron.

[9]  J. Trojanowski,et al.  Higher CSF sTREM2 and microglia activation are associated with slower rates of beta‐amyloid accumulation , 2020, EMBO molecular medicine.

[10]  J. Elstrott,et al.  Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Aβ42:Aβ40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model , 2020, The Journal of Neuroscience.

[11]  Taylor W. Schmitz,et al.  Longitudinal Basal Forebrain Degeneration Interacts with TREM2/C3 Biomarkers of Inflammation in Presymptomatic Alzheimer's Disease , 2020, The Journal of Neuroscience.

[12]  I. Saltvedt,et al.  A high cerebrospinal fluid soluble TREM2 level is associated with slow clinical progression of Alzheimer's disease , 2020, Alzheimer's & dementia.

[13]  M. Weiner,et al.  Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer’s disease , 2019, Science Translational Medicine.

[14]  K. Blennow,et al.  The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk , 2019, Science Translational Medicine.

[15]  J. Molinuevo,et al.  CSF glial biomarkers YKL40 and sTREM2 are associated with longitudinal volume and diffusivity changes in cognitively unimpaired individuals , 2019, NeuroImage: Clinical.

[16]  Genetic,et al.  Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing , 2019, Nature Genetics.

[17]  D. Holtzman,et al.  Loss of TREM2 function increases amyloid seeding but reduces plaque associated ApoE , 2018, Nature Neuroscience.

[18]  J. Morris,et al.  TREM2 brain transcript-specific studies in AD and TREM2 mutation carriers , 2019, Molecular Neurodegeneration.

[19]  J. Trojanowski,et al.  Early increase of CSF sTREM2 in Alzheimer’s disease is associated with tau related-neurodegeneration but not with amyloid-β pathology , 2019, Molecular Neurodegeneration.

[20]  Nick C. Fox,et al.  Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease , 2018, Neurology.

[21]  Andrew J. Saykin,et al.  Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer disease: a longitudinal study , 2018, The Lancet Neurology.

[22]  C. Haass,et al.  An Alzheimer‐associated TREM2 variant occurs at the ADAM cleavage site and affects shedding and phagocytic function , 2017, EMBO molecular medicine.

[23]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[24]  W. Wurst,et al.  TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury , 2017, EMBO reports.

[25]  Chengjie Xiong,et al.  The DIAN-TU Next Generation Alzheimer's prevention trial: Adaptive design and disease progression model , 2017, Alzheimer's & Dementia.

[26]  Adrian Danek,et al.  Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury , 2016, Science Translational Medicine.

[27]  Chengjie Xiong,et al.  Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer’s Disease: Results from the DIAN Study Group , 2016, PloS one.

[28]  K. Blennow,et al.  sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early‐stage Alzheimer's disease and associate with neuronal injury markers , 2016, EMBO molecular medicine.

[29]  A. Fagan,et al.  Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status , 2016, Acta Neuropathologica.

[30]  A. Fagan,et al.  Bivariate correlation coefficients in family‐type clustered studies , 2015, Biometrical journal. Biometrische Zeitschrift.

[31]  C. Jack,et al.  Nonlinear Association Between Cerebrospinal Fluid and Florbetapir F-18 β-Amyloid Measures Across the Spectrum of Alzheimer Disease. , 2015, JAMA neurology.

[32]  Wei Pan,et al.  Longitudinal Analysis Is More Powerful than Cross-Sectional Analysis in Detecting Genetic Association with Neuroimaging Phenotypes , 2014, PloS one.

[33]  J. Molinuevo,et al.  TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis , 2014, Science Translational Medicine.

[34]  Randall J Bateman,et al.  Dominantly Inherited Alzheimer Network: facilitating research and clinical trials , 2013, Alzheimer's Research & Therapy.

[35]  M N Rossor,et al.  Preclinical trials in autosomal dominant AD: implementation of the DIAN-TU trial. , 2013, Revue neurologique.

[36]  A. Singleton,et al.  TREM2 variants in Alzheimer's disease. , 2013, The New England journal of medicine.

[37]  M. Heneka,et al.  NLRP3 is activated in Alzheimer´s disease and contributes to pathology in APP/PS1 mice , 2012, Nature.

[38]  Nick C Fox,et al.  Clinical and biomarker changes in dominantly inherited Alzheimer's disease. , 2012, The New England journal of medicine.

[39]  Owen Carmichael,et al.  Update on the Magnetic Resonance Imaging core of the Alzheimer's Disease Neuroimaging Initiative , 2010, Alzheimer's & Dementia.

[40]  Geert Verbeke,et al.  Joint modelling of multivariate longitudinal profiles: pitfalls of the random‐effects approach , 2004, Statistics in medicine.

[41]  T. Saido,et al.  Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Aβ to physiologically relevant proteolytic degradation , 2003, The Lancet.

[42]  J. Morris The Clinical Dementia Rating (CDR) , 1993, Neurology.

[43]  K. N. Dollman,et al.  - 1 , 1743 .