Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer's disease: a longitudinal observational study
暂无分享,去创建一个
Nick C Fox | Alyssa R. Gonzalez | A. Fagan | J. Morris | K. Blennow | D. Holtzman | V. Buckles | N. Seyfried | J. Chhatwal | S. Salloway | R. Bateman | C. Xiong | A. Goate | B. Ghetti | E. McDade | C. Masters | J. Ringman | M. Senda | B. Snitz | C. Mummery | M. Ewers | R. Perrin | R. Koeppe | K. Mawuenyega | Wendy C. Sigurdson | J. Norton | Qing Wang | Anna Hofmann | H. Zetterberg | N. Graff-Radford | J. Noble | M. Farlow | Charles D Chen | K. Taddei | M. Jucker | J. Hassenstab | N. Mason | Lingyan Ping | T. Benzinger | Erik C.B. Johnson | A. Renton | H. Sohrabi | S. Gardener | C. Laske | C. Haass | N. Franzmeier | M. Suárez-Calvet | B. Feldman | N. Nadkarni | J. Brosch | R. Feederle | G. Day | R. Allegri | Sarah Goldberg | R. Ihara | Jinbin Xu | Ralph M. Martins | B. Nuscher | Austin McCullough | Aylin Dincer | R. Hornbeck | T. Ikeuchi | J. Goldman | C. Jack | J. Levin | E. Morenas-Rodriguez | G. Jerome | Elizabeth M. Herries | S. Berman | G. Kleinberger | E. Weamer | Darcy R. Denner | Oscar L. Lopez | B. Nellgård | Nicolas R. Barthélemy | H. Shimada | Y. Niimi | K. Ishii | K. Kasuga | P. Schofield | Yan Li | O. Preische | Jill Buck | Kathleen Carter | J. Vöglein | Kai Schlepckow | Jennifer C. M. Smith | C. Cruchaga | B. Gordon | H. Chui | Allan Levey | H. Fujii | Antoinette O’Connor | Lisa Cash | M. Graham | Lori Smith | Susanne Gräber-Sultan | Jane Douglas | Jacob Bechara | M. Grilo | W. Brooks | L. Ping | E. Johnson | Lisa M. Häsler | W. Klunk | Patricio Chrem | S. Käser | Deborah Koudelis | S. Brandon | J. Chua | Tamara Donahue | Julia D. Gray | Emily Gremminger | Alexandrer Groves | Cortaiga Hellm | Laura Hoechst-Swisher | Jacob Marsh | Rita Martinez | Kristine E. Shady | Peter Wang | Xiong Xu | Noelia Egido | Akihiko Araki | S. Ikonomović | Riddhi Patira | Courtney A. Bodge | Duc Duong | Sochenda Stephens | Chrismary De La Cruz | Arlene Mejia | Katie Neimeyer | Anna Diffenbacher | Bianca T Esposito | Elke Kuder-Buletta | Akem Nagamatsu | U. Obermüller | C. Karch | S. Flores | Stephanie A. Schultz | Colleen D Fitzpatrick | S. Adams | S. Keefe | Sarah Thompson | E. Franklin | Nelly Friedrichsen | Yakushev Igor | James MountzMD | Colleen D. Fitzpatrick | J. Douglas | Oscar Lopez | S. Thompson | J. Morris | Helena L. Chui | Gina Jerome | J. Morris | James M. Noble | R. Martins | J. Morris | J. Morris | Clifford Jack | Susanne Gräber‐Sultan | C. Xiong | A. O’Connor | Charles Chen | K. Schlepckow
[1] Douglas Galasko,et al. Biomarkers of neurodegeneration and glial activation validated in Alzheimer’s disease assessed in longitudinal cerebrospinal fluid samples of Parkinson’s disease , 2021, PloS one.
[2] K. Blennow,et al. Microglial activation and tau propagate jointly across Braak stages , 2021, Nature Medicine.
[3] A. Nimmerjahn,et al. Microglia use TAM receptors to detect and engulf amyloid beta plaques , 2021, Nature Immunology.
[4] L. Tan,et al. Microglia Biomarkers in Alzheimer’s Disease , 2021, Molecular Neurobiology.
[5] Melanie A. Huntley,et al. Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology , 2021, Neuron.
[6] G. Petsko,et al. Endosomal recycling reconciles the Alzheimer’s disease paradox , 2020, Science Translational Medicine.
[7] P. Weinreb,et al. Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life , 2020, Nature Neuroscience.
[8] C. Haass,et al. Emerging Microglia Biology Defines Novel Therapeutic Approaches for Alzheimer’s Disease , 2020, Neuron.
[9] J. Trojanowski,et al. Higher CSF sTREM2 and microglia activation are associated with slower rates of beta‐amyloid accumulation , 2020, EMBO molecular medicine.
[10] J. Elstrott,et al. Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Aβ42:Aβ40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model , 2020, The Journal of Neuroscience.
[11] Taylor W. Schmitz,et al. Longitudinal Basal Forebrain Degeneration Interacts with TREM2/C3 Biomarkers of Inflammation in Presymptomatic Alzheimer's Disease , 2020, The Journal of Neuroscience.
[12] I. Saltvedt,et al. A high cerebrospinal fluid soluble TREM2 level is associated with slow clinical progression of Alzheimer's disease , 2020, Alzheimer's & dementia.
[13] M. Weiner,et al. Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer’s disease , 2019, Science Translational Medicine.
[14] K. Blennow,et al. The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk , 2019, Science Translational Medicine.
[15] J. Molinuevo,et al. CSF glial biomarkers YKL40 and sTREM2 are associated with longitudinal volume and diffusivity changes in cognitively unimpaired individuals , 2019, NeuroImage: Clinical.
[16] Genetic,et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing , 2019, Nature Genetics.
[17] D. Holtzman,et al. Loss of TREM2 function increases amyloid seeding but reduces plaque associated ApoE , 2018, Nature Neuroscience.
[18] J. Morris,et al. TREM2 brain transcript-specific studies in AD and TREM2 mutation carriers , 2019, Molecular Neurodegeneration.
[19] J. Trojanowski,et al. Early increase of CSF sTREM2 in Alzheimer’s disease is associated with tau related-neurodegeneration but not with amyloid-β pathology , 2019, Molecular Neurodegeneration.
[20] Nick C. Fox,et al. Longitudinal cognitive and biomarker changes in dominantly inherited Alzheimer disease , 2018, Neurology.
[21] Andrew J. Saykin,et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer disease: a longitudinal study , 2018, The Lancet Neurology.
[22] C. Haass,et al. An Alzheimer‐associated TREM2 variant occurs at the ADAM cleavage site and affects shedding and phagocytic function , 2017, EMBO molecular medicine.
[23] I. Amit,et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.
[24] W. Wurst,et al. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury , 2017, EMBO reports.
[25] Chengjie Xiong,et al. The DIAN-TU Next Generation Alzheimer's prevention trial: Adaptive design and disease progression model , 2017, Alzheimer's & Dementia.
[26] Adrian Danek,et al. Early changes in CSF sTREM2 in dominantly inherited Alzheimer’s disease occur after amyloid deposition and neuronal injury , 2016, Science Translational Medicine.
[27] Chengjie Xiong,et al. Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer’s Disease: Results from the DIAN Study Group , 2016, PloS one.
[28] K. Blennow,et al. sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early‐stage Alzheimer's disease and associate with neuronal injury markers , 2016, EMBO molecular medicine.
[29] A. Fagan,et al. Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status , 2016, Acta Neuropathologica.
[30] A. Fagan,et al. Bivariate correlation coefficients in family‐type clustered studies , 2015, Biometrical journal. Biometrische Zeitschrift.
[31] C. Jack,et al. Nonlinear Association Between Cerebrospinal Fluid and Florbetapir F-18 β-Amyloid Measures Across the Spectrum of Alzheimer Disease. , 2015, JAMA neurology.
[32] Wei Pan,et al. Longitudinal Analysis Is More Powerful than Cross-Sectional Analysis in Detecting Genetic Association with Neuroimaging Phenotypes , 2014, PloS one.
[33] J. Molinuevo,et al. TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis , 2014, Science Translational Medicine.
[34] Randall J Bateman,et al. Dominantly Inherited Alzheimer Network: facilitating research and clinical trials , 2013, Alzheimer's Research & Therapy.
[35] M N Rossor,et al. Preclinical trials in autosomal dominant AD: implementation of the DIAN-TU trial. , 2013, Revue neurologique.
[36] A. Singleton,et al. TREM2 variants in Alzheimer's disease. , 2013, The New England journal of medicine.
[37] M. Heneka,et al. NLRP3 is activated in Alzheimer´s disease and contributes to pathology in APP/PS1 mice , 2012, Nature.
[38] Nick C Fox,et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. , 2012, The New England journal of medicine.
[39] Owen Carmichael,et al. Update on the Magnetic Resonance Imaging core of the Alzheimer's Disease Neuroimaging Initiative , 2010, Alzheimer's & Dementia.
[40] Geert Verbeke,et al. Joint modelling of multivariate longitudinal profiles: pitfalls of the random‐effects approach , 2004, Statistics in medicine.
[41] T. Saido,et al. Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Aβ to physiologically relevant proteolytic degradation , 2003, The Lancet.
[42] J. Morris. The Clinical Dementia Rating (CDR) , 1993, Neurology.
[43] K. N. Dollman,et al. - 1 , 1743 .