Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review.

This work describes the state of the art of electrochemical devices for the detection of an important class of neurotransmitters: the catecholamines. This class of biogenic amines includes dopamine, noradrenaline (also called norepinephrine) and adrenaline (also called epinephrine). Researchers have focused on the role of catecholamine molecules within the human body because they are involved in many important biological functions and are commonly associated with several diseases, such as Alzheimer's and Parkinson. Furthermore, the release of catecholamines as a consequence of induced stimulus is an important indicator of reward-related behaviors, such as food, drink, sex and drug addiction. Thus, the development of simple, fast and sensitive electroanalytical methodologies for the determination of catecholamines is currently needed in clinical and biomedical fields, as they have the potential to serve as clinically relevant biomarkers for specific disease states or to monitor treatment efficacy. Currently, three main strategies have used by researchers to detect catecholamine molecules, namely: the use electrochemical materials in combination with, for example, HPLC or FIA, the incorporation of new materials/layers on the sensor surfaces (Tables 1-7) and in vivo detection, manly by using FSCV at CFMEs (Section 10). The developed methodologies were able not only to accurately detect catecholamines at relevant concentration levels, but to do so in the presence of co-existing interferences in samples detected (ascorbate, for example). This review examines the progress made in electrochemical sensors for the selective detection of catecholamines in the last 15 years, with special focus on highly innovative features introduced by nanotechnology. As the literature in rather extensive, we try to simplify this work by summarizing and grouping electrochemical sensors according to the manner their substrates were chemically modified. We also discuss the current and future of electrochemical sensors for catecholamines in terms of the analytical performance of the devices and emerging applications.

[1]  Lei Zhang,et al.  Electrochemical synthesis of a novel thiazole-based copolymer and its use for the simultaneous determination of dopamine, uric acid and nitrite , 2013 .

[2]  J. Fei,et al.  Carbon nanomaterial based electrochemical sensors for biogenic amines , 2013, Microchimica Acta.

[3]  Z. Dursun,et al.  Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid. , 2010, Talanta.

[4]  L. Kubota,et al.  Development of a sensor based on tetracyanoethylenide (LiTCNE)/poly-L-lysine (PLL) for dopamine determination , 2005 .

[5]  R. Compton,et al.  A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode , 2007, Analytical and bioanalytical chemistry.

[6]  Munetaka Oyama,et al.  Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: Application in pharmaceutical formulations and biological fluids. , 2007, Talanta.

[7]  M. Salavati‐Niasari,et al.  A novel N,N′-[1,1′-Dithiobis(phenyl)] bis(salicylaldimine) self-assembled gold electrode for det , 2011 .

[8]  V. Soldi,et al.  Characterization of horseradish peroxidase immobilized on PEGylated polyurethane nanoparticles and its application for dopamine detection , 2013 .

[9]  G. Rivas,et al.  DNA-Modified Electrode for the Detection of Aromatic Amines , 1996 .

[10]  K. Gillis,et al.  On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes. , 2006, Analytical chemistry.

[11]  J. J. Cone,et al.  Ghrelin Acts as an Interface between Physiological State and Phasic Dopamine Signaling , 2014, The Journal of Neuroscience.

[12]  M. Cabral,et al.  Electrocatalytic Behavior of Glassy Carbon Electrodes Modified with Multiwalled Carbon Nanotubes and Cobalt Phthalocyanine for Selective Analysis of Dopamine in Presence of Ascorbic Acid , 2008 .

[13]  Li Niu,et al.  Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. , 2011, Biosensors & bioelectronics.

[14]  Xiliang Luo,et al.  Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid , 2013 .

[15]  E. McFarland,et al.  Investigation of the enhanced signals from cations and dopamine in electrochemical sensors coated with Nafion , 2009 .

[16]  A. Ewing,et al.  VMAT-Mediated Changes in Quantal Size and Vesicular Volume , 2000, The Journal of Neuroscience.

[17]  R. Mahajan,et al.  Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. , 2010, Biosensors & bioelectronics.

[18]  Richard G Compton,et al.  The use of nanoparticles in electroanalysis: an updated review , 2010, Analytical and bioanalytical chemistry.

[19]  Shen-ming Chen,et al.  Multi-walled carbon nanotubes with poly(methylene blue) composite film for the enhancement and separation of electroanalytical responses of catecholamine and ascorbic acid , 2008 .

[20]  J. Covington,et al.  Ultrasensitive detection of dopamine using a carbon nanotube network microfluidic flow electrode. , 2013, Analytical chemistry.

[21]  G. Rivas,et al.  Graphene Paste Electrode: Analytical Applications for the Quantification of Dopamine, Phenolic Compounds and Ethanol , 2014 .

[22]  Xianfu Lin,et al.  Electrochemical activation of polyethyleneimine-wrapped carbon nanotubes/in situ formed gold nanoparticles functionalised nanocomposite sensor for high sensitive and selective determination of dopamine , 2013 .

[23]  M. S. Ahmed,et al.  Electrochemical oxidation and determination of dopamine in the presence of AA using ferulic acid functionalized electrochemically reduced graphene , 2014 .

[24]  Huajie Zhang,et al.  Surface effects of mesoporous silica modified electrode and application in electrochemical detection of dopamine. , 2010, Colloids and surfaces. B, Biointerfaces.

[25]  Ce Wang,et al.  Electrochemical determination of dopamine based on electrospun CeO2/Au composite nanofibers , 2013 .

[26]  T. Łuczak Determination of Norepinephrine Alone and in the Presence of Ascorbic and Uric Acids Using a Gold Electrode Modified with Gold Nanoparticles and Self‐Assembled Layers of meso‐2,3‐Dimercaptosuccinic Acid , 2014 .

[27]  Pavel Takmakov,et al.  Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release. , 2010, The Analyst.

[28]  Mehmet Aslanoglu,et al.  Voltammetric selectivity conferred by the modification of electrodes using conductive porous layers or films: The oxidation of dopamine on glassy carbon electrodes modified with multiwalled carbon nanotubes , 2010 .

[29]  Shen-ming Chen,et al.  In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. , 2014, Colloids and surfaces. B, Biointerfaces.

[30]  Mohamed M. Chehimi,et al.  Molecularly imprinted polypyrrole films: Some key parameters for electrochemical picomolar detection of dopamine , 2012 .

[31]  Xinhua Lin,et al.  Electrocatalytic Oxidation and Determination of Dopamine in the Presence of Ascorbic Acid and Uric Acid at a Poly (4‐(2‐Pyridylazo)‐Resorcinol) Modified Glassy Carbon Electrode , 2007 .

[32]  M. Ligaj,et al.  DNA sensor for o-dianisidine. , 2004, Bioelectrochemistry.

[33]  L. Kubota,et al.  Highly Sensitive and Selective Basal Plane Pyrolytic Graphite Electrode Modified with 1,4-Naphthoquinone/MWCNT for Simultaneous Determination of Dopamine, Ascorbate and Urate , 2013 .

[34]  I. Vieira,et al.  Bean sprout peroxidase biosensor based on l-cysteine self-assembled monolayer for the determination of dopamine , 2008 .

[35]  Qin Xu,et al.  Graphene–Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine , 2012 .

[36]  Bhim Bali Prasad,et al.  A dual-template imprinted polymer-modified carbon ceramic electrode for ultra trace simultaneous analysis of ascorbic acid and dopamine. , 2013, Biosensors & bioelectronics.

[37]  R. Wightman,et al.  Monitoring rapid chemical communication in the brain. , 2008, Chemical reviews.

[38]  Xiangqin Lin,et al.  Immobilization of DNA on carbon fiber microelectrodes by using overoxidized polypyrrole template for selective detection of dopamine and epinephrine in the presence of high concentrations of ascorbic acid and uric acid. , 2005, The Analyst.

[39]  Z. Gu,et al.  Electrocatalytic oxidation of norepinephrine at a reduced C60-[dimethyl-(β-cyclodextrin)]2 and nafion chemically modified electrode , 2002 .

[40]  G. Hu,et al.  Selective response of dopamine in the presence of ascorbic acid on L-cysteine self-assembled gold electrode. , 2006, Bioelectrochemistry.

[41]  Yanzhi Xia,et al.  Modification of electrode surface with covalently functionalized graphene oxide by l-tyrosine for determination of dopamine , 2015 .

[42]  T. Ohsaka,et al.  Electroanalysis of ascorbate and dopamine at a gold electrode modified with a positively charged self-assembled monolayer , 2001 .

[43]  Jose Savio Melo,et al.  Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid. , 2011, Bioelectrochemistry.

[44]  Ruo Yuan,et al.  Simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan on gold nanoparticles/overoxidized-polyimidazole composite modified glassy carbon electrode. , 2012, Analytica chimica acta.

[45]  A. Fujishima,et al.  Enhanced electrochemical response in oxidative differential pulse voltammetry of dopamine in the presence of ascorbic acid at carboxyl-terminated boron-doped diamond electrodes , 2009 .

[46]  P. Garris,et al.  Sensitization of rapid dopamine signaling in the nucleus accumbens core and shell after repeated cocaine in rats. , 2010, Journal of neurophysiology.

[47]  J. Dupont,et al.  Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline , 2009 .

[48]  A. Michael,et al.  Comparison of the brain penetration injury associated with microdialysis and voltammetry , 2009, Journal of Neuroscience Methods.

[49]  Z. Gu,et al.  Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. , 2001, Analytical chemistry.

[50]  M. Noroozifar,et al.  Modified fluorine-doped tin oxide electrode with inorganic ruthenium red dye-multiwalled carbon nanotubes for simultaneous determination of a dopamine, uric acid, and tryptophan , 2014 .

[51]  Sathish Reddy,et al.  CuO nanoparticle sensor for the electrochemical determination of dopamine , 2012 .

[52]  C. Blaha,et al.  Detection of catecholamines in brain tissue : surface-modified electrodes enabling in vivo investigations of dopamine function , 1990 .

[53]  Martin M. F. Choi,et al.  Low-potential amperometric detection of dopamine based on MnO2 nanowires/chitosan modified gold electrode , 2013 .

[54]  Feng Gao,et al.  Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode , 2013 .

[55]  A. Galal,et al.  Gold nanoparticles-coated poly(3,4-ethylene-dioxythiophene) for the selective determination of sub-nano concentrations of dopamine in presence of sodium dodecyl sulfate , 2012 .

[56]  Kalayil Manian Manesh,et al.  Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. , 2007, Talanta.

[57]  Dan Wu,et al.  Sensitive Electrochemical Sensor for Simultaneous Determination of Dopamine, Ascorbic Acid, and Uric Acid Enhanced by Amino-group Functionalized Mesoporous Fe3O4@Graphene Sheets , 2014 .

[58]  Shishan Wu,et al.  In situ polymerization of highly dispersed polypyrrole on reduced graphite oxide for dopamine detection. , 2013, Biosensors & bioelectronics.

[59]  J. Millar,et al.  Simultaneous real-time amperometric measurement of catecholamines and serotonin at carbon fibre ‘dident’ microelectrodes , 2004, Journal of Neuroscience Methods.

[60]  R. Wightman,et al.  Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines. , 2006, Langmuir.

[61]  D. Mandler,et al.  Self-assembled monolayers in electroanalytical chemistry: application of .omega.-mercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid , 1993 .

[62]  C. Banks,et al.  Chemically Modified Carbon Nanotubes for Use in Electroanalysis , 2006 .

[63]  R. Wightman,et al.  In vivo voltammetric monitoring of catecholamine release in subterritories of the nucleus accumbens shell , 2010, Neuroscience.

[64]  Martin Pumera,et al.  Biomarkers Detection on Hydrogenated Graphene Surfaces: Towards Applications of Graphane in Biosensing , 2013 .

[65]  Shen-ming Chen,et al.  Preparation and electrocatalytic properties of osmium oxide/hexacyanoruthenate films modified electrodes for catecholamines and sulfur oxoanions , 2006 .

[66]  E. Shams,et al.  Selective response of dopamine in the presence of ascorbic acid on carbon paste electrode modified with titanium phosphated silica gel. , 2007, Analytica chimica acta.

[67]  Hao‐Li Zhang,et al.  Application of self-assembled ‘molecular wires?monolayers for electroanalysis of dopamine , 2006 .

[68]  Shen-ming Chen,et al.  Electrochemical preparation of epinephrine/Nafion chemically modified electrodes and their electrocatalytic oxidation of ascorbic acid and dopamine , 2006 .

[69]  P. Kissinger,et al.  Voltammetry in brain tissue--a new neurophysiological measurement. , 1973, Brain research.

[70]  I. Brener,et al.  Simultaneous Detection of Dopamine, Ascorbic Acid and Uric Acid at Lithographically‐Defined 3D Graphene Electrodes , 2014 .

[71]  L T Kubota,et al.  Exploiting micellar environment for simultaneous electrochemical determination of ascorbic acid and dopamine. , 2005, Talanta.

[72]  Yang Liu,et al.  Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. , 2008, Biosensors & bioelectronics.

[73]  Lei Zhang Covalent modification of glassy carbon electrode with cysteine for the determination of dopamine in the presence of ascorbic acid , 2008 .

[74]  Baokang Jin,et al.  In-situ FTIR Spectroelectrochemical Study of Dopamine at a Glassy Carbon Electrode in a Neutral Solution , 2002, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[75]  A. Erdem,et al.  Electrochemical sensing of silver tags labelled DNA immobilized onto disposable graphite electrodes , 2007 .

[76]  Xinhua Lin,et al.  Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid , 2007 .

[77]  R. Renneberg,et al.  Sensitive dopamine recognition by boronic acid functionalized multi-walled carbon nanotubes. , 2007, Chemical communications.

[78]  Martin M. F. Choi,et al.  Simultaneous determination of L-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin-graphene-modified electrode by square wave voltammetry. , 2012, Talanta.

[79]  R. Wightman,et al.  Dynamic changes in accumbens dopamine correlate with learning during intracranial self-stimulation , 2008, Proceedings of the National Academy of Sciences.

[80]  P. Nagaraja,et al.  A new sensitive and selective spectrophotometric method for the determination of catechol derivatives and its pharmaceutical preparations. , 2001, Journal of pharmaceutical and biomedical analysis.

[81]  Haim H Bau,et al.  Carbon nanopipette electrodes for dopamine detection in Drosophila. , 2015, Analytical chemistry.

[82]  A. Michael,et al.  Carbon fiber microelectrodes with multiple sensing elements for in vivo voltammetry , 2002, Journal of Neuroscience Methods.

[83]  M. Ramírez-Silva,et al.  Gold nanoparticles modified-ITO electrode for the selective electrochemical quantification of dopamine in the presence of uric and ascorbic acids , 2013 .

[84]  Wei Wang,et al.  Monitoring of vesicular exocytosis from single cells using micrometer and nanometer-sized electrochemical sensors , 2009, Analytical and bioanalytical chemistry.

[85]  Qijin Wan,et al.  Catalytic capability of poly(malachite green) films based electrochemical sensor for oxidation of dopamine , 2007 .

[86]  N. K. Chaki,et al.  Self-assembled monolayers as a tunable platform for biosensor applications. , 2002, Biosensors & bioelectronics.

[87]  J. Millar,et al.  Continuous scan cyclic voltammetry (CSCV): a new high-speed electrochemical method for monitoring neuronal dopamine release , 1992, Journal of Neuroscience Methods.

[88]  Shaneel Chandra,et al.  Minimizing fouling at hydrogenated conical-tip carbon electrodes during dopamine detection in vivo. , 2014, Analytical chemistry.

[89]  W. Kutner,et al.  Molecularly imprinted polymer of bis(2,2'-bithienyl)methanes for selective determination of adrenaline. , 2013, Bioelectrochemistry.

[90]  Pulickel M. Ajayan,et al.  Carbon nanotube electrode for oxidation of dopamine , 1996 .

[91]  Carlos D. Garcia,et al.  Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. , 2011, Analytica chimica acta.

[92]  J. B. Justice,et al.  Peer Reviewed: Probing Brain Chemistry: Voltammetry Comes of Age , 1996 .

[93]  Jianping Li,et al.  A sensitive and selective sensor for dopamine determination based on a molecularly imprinted electropolymer of o-aminophenol , 2009 .

[94]  Nephi Stella,et al.  Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals , 2009, Nature Methods.

[95]  S. Kitazawa,et al.  Phasic reward responses in the monkey striatum as detected by voltammetry with diamond microelectrodes , 2011, Neuroscience Research.

[96]  An electrochemical sensor based on poly (solochrome dark blue) film coated electrode for the determination of dopamine and simultaneous separation in the presence of uric acid and ascorbic acid: a voltammetric method. , 2013, Colloids and surfaces. B, Biointerfaces.

[97]  T. Glass,et al.  Selective amine recognition: development of a chemosensor for dopamine and norepinephrine. , 2004, Organic letters.

[98]  G. Diao,et al.  Self-assembled Thiolated Calix[n]arene (n=4, 6, 8) Films on Gold Electrodes and Application for Electrochemical Determination Dopamine , 2014 .

[99]  Jianrong Chen,et al.  A novel composite of molecularly imprinted polymer-coated PdNPs for electrochemical sensing norepinephrine. , 2015, Biosensors & bioelectronics.

[100]  Jianshan Ye,et al.  Graphene‐Modified Carbon Fiber Microelectrode for the Detection of Dopamine in Mice Hippocampus Tissue , 2011 .

[101]  Wanzhi. Wei,et al.  Application of multi-walled carbon nanotubes modified carbon ionic liquid electrode for electrocatalytic oxidation of dopamine. , 2011, Colloids and surfaces. B, Biointerfaces.

[102]  B. Ganjipour,et al.  Novel 2,2'-[1,2-ethanediylbis(nitriloethylidyne)]-bis-hydroquinone double-wall carbon nanotube paste electrode for simultaneous determination of epinephrine, uric acid and folic acid. , 2008, Biosensors & bioelectronics.

[103]  R. Wightman,et al.  Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. , 2003, Clinical chemistry.

[104]  Sarnjeet S. Dhesi,et al.  Catalyst‐Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes , 2008 .

[105]  Chang Wei,et al.  Graphitic carbon nitride nanosheets doped graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine and uric acid , 2014 .

[106]  A. Michael,et al.  Pharmacological mitigation of tissue damage during brain microdialysis. , 2013, Analytical chemistry.

[107]  Dongxue Han,et al.  Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan‐Graphene Modified Electrode , 2010 .

[108]  S. Ai,et al.  Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid , 2011 .

[109]  Yuyuan Tian,et al.  In situ STM study of self-assembled mercaptopropionic acid monolayers for electrochemical detection of dopamine , 1999 .

[110]  V. A. Kazakov,et al.  Determination of Catecholamines by Capillary Electrophoresis and Reversed-Phase High-Performance Liquid Chromatography , 2004 .

[111]  R. Wightman,et al.  Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome. , 2012, The Journal of clinical investigation.

[112]  D. L. Wong Epinephrine Biosynthesis: Hormonal and Neural Control During Stress , 2006, Cellular and Molecular Neurobiology.

[113]  Huixiang Li,et al.  An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. , 2014, Talanta.

[114]  José M Pingarrón,et al.  Role of carbon nanotubes in electroanalytical chemistry: a review. , 2008, Analytica chimica acta.

[115]  Xiangqin Lin,et al.  RNA Modified Electrodes for Simultaneous Determination of Dopamine and Uric Acid in the Presence of High Amounts of Ascorbic Acid , 2006 .

[116]  Mona Khafaji,et al.  Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid , 2010 .

[117]  Shuang Li,et al.  A sensor of a polyoxometalate and Au–Pd alloy for simultaneously detection of dopamine and ascorbic acid , 2013 .

[118]  Dong-Hwang Chen,et al.  Simultaneous determination of norepinephrine, uric acid, and ascorbic acid at a screen printed carbon electrode modified with polyacrylic acid-coated multi-wall carbon nanotubes. , 2010, Biosensors & bioelectronics.

[119]  R. Wightman,et al.  Opposing Catecholamine Changes in the Bed Nucleus of the Stria Terminalis During Intracranial Self-Stimulation and Its Extinction , 2013, Biological Psychiatry.

[120]  B. J. Venton,et al.  Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. , 2007, The Analyst.

[121]  Yufeng Ma,et al.  A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. , 2007, Analytical chemistry.

[122]  P. He,et al.  Zeolite A functionalized with copper nanoparticles and graphene oxide for simultaneous electrochemical determination of dopamine and ascorbic acid. , 2012, Analytica chimica acta.

[123]  Shen-ming Chen,et al.  Electropolymerization of curcumin on glassy carbon electrode and its electrocatalytic application for the voltammetric determination of epinephrine and p-acetoaminophenol. , 2014, Colloids and surfaces. B, Biointerfaces.

[124]  G. Shen,et al.  Highly Selective Dopamine Determination by Using Carboxymethylated β‐Cyclodextrin Polymer Film Modified Electrode , 2004 .

[125]  Zujin Shi,et al.  Investigation of the electrochemical behavior of dopamine at electrodes modified with ferrocene-filled double-walled carbon nanotubes , 2012 .

[126]  R. Landers,et al.  In situ immobilization of nickel(II) phthalocyanine on mesoporous SiO2/C carbon ceramic matrices prepared by the sol–gel method: Use in the simultaneous voltammetric determination of ascorbic acid and dopamine , 2013 .

[127]  Jiyoung Lee,et al.  Electrochemical detection of dopamine using a bare indium–tin oxide electrode and scan rate control , 2013 .

[128]  S. Kumar,et al.  Electrochemical behaviour and electrocatalytic activity of a novel nickel aquapentacyanoferrate modified electrode , 2006 .

[129]  S. Yao,et al.  Self-assembled oligo(phenylene ethynylene)s/graphene nanocomposite with improved electrochemical performances for dopamine determination. , 2013, Analytica chimica acta.

[130]  Qijin Wan,et al.  Poly(malachite green) film: Electrosynthesis, characterization, and sensor application , 2006 .

[131]  J. Tashkhourian,et al.  Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid , 2009 .

[132]  R. Wightman,et al.  Cannabinoids Enhance Subsecond Dopamine Release in the Nucleus Accumbens of Awake Rats , 2004, The Journal of Neuroscience.

[133]  Ping Yang,et al.  A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid , 2014 .

[134]  P. Garris,et al.  Frequency of Dopamine Concentration Transients Increases in Dorsal and Ventral Striatum of Male Rats during Introduction of Conspecifics , 2002, The Journal of Neuroscience.

[135]  H. Carapuça,et al.  Ion-exchange voltammetry of dopamine at Nafion-coated glassy carbon electrodes: quantitative features of ion-exchange partition and reassessment on the oxidation mechanism of dopamine in the presence of excess ascorbic acid. , 2006, Bioelectrochemistry.

[136]  Liping Lu,et al.  DNA/Poly(p-aminobenzensulfonic acid) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. , 2007, Bioelectrochemistry.

[137]  Meixian Li,et al.  Electroanalysis of dopamine at a gold electrode modified with N-acetylcysteine self-assembled monolayer. , 2004, Talanta.

[138]  R. Wightman,et al.  Neurochemistry and electroanalytical probes. , 2002, Current opinion in chemical biology.

[139]  A. Turner,et al.  Interference‐Free Electrochemical Detection of Nanomolar Dopamine Using Doped Polypyrrole and Silver Nanoparticles , 2014 .

[140]  T. Ohsaka,et al.  Gold nanoparticle arrays for the voltammetric sensing of dopamine , 2003 .

[141]  Zhihua Wang,et al.  A novel nanocomposites sensor for epinephrine detection in the presence of uric acids and ascorbic acids , 2011 .

[142]  S. K. Vashist,et al.  Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites , 2015 .

[143]  Ying Xiong,et al.  A nano-sized Au electrode fabricated using lithographic technology for electrochemical detection of dopamine. , 2012, Biosensors & bioelectronics.

[144]  J. Nan,et al.  Novel water-soluble multi-nanopore graphene modified glassy carbon electrode for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid , 2014 .

[145]  Erika Bustos,et al.  Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites , 2011 .

[146]  Parastoo Hashemi,et al.  Chronically Implanted, Nafion-Coated Ag/AgCl Reference Electrodes for Neurochemical Applications. , 2011, ACS chemical neuroscience.

[147]  Dong Liu,et al.  Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode , 2014 .

[148]  Preparation, Characterization and Analytical Applications of a New and Novel Electrically Conducting Polymer , 2006 .

[149]  Zhongze Gu,et al.  Electrochemical Properties of a Boron‐Doped Diamond Electrode Modified with Gold/Polyelectrolyte Hollow Spheres , 2009 .

[150]  Jeffrey T La Belle,et al.  Amperometric sensing of norepinephrine at picomolar concentrations using screen printed, high surface area mesoporous carbon. , 2013, Analytica chimica acta.

[151]  Arunas Ramanavicius,et al.  Copper nanoparticle modified carbon electrode for determination of dopamine , 2012 .

[152]  Mohammad Mazloum-Ardakani,et al.  Electrochemical sensor for simultaneous determination of norepinephrine, paracetamol and folic acid by a nanostructured mesoporous material , 2012 .

[153]  Manuel Palomar-Pardavé,et al.  Selective electrochemical determination of dopamine in the presence of ascorbic acid using sodium dodecyl sulfate micelles as masking agent , 2008 .

[154]  Shengshui Hu,et al.  Electrochemical Study and Selective Determination of Dopamine at a Multi-Wall Carbon Nanotube-Nafion Film Coated Glassy Carbon Electrode , 2004 .

[155]  R. Goyal,et al.  Electrochemical and peroxidase-catalyzed oxidation of epinephrine , 2012 .

[156]  George Grüner Carbon nanotube transistors for biosensing applications. , 2005 .

[157]  Xinhua Lin,et al.  Selective oxidation of serotonin and norepinephrine over eriochrome cyanine R film modified glassy carbon electrode , 2009 .

[158]  Feifei Zhang,et al.  A Selective Voltammetric Method for Detecting Dopamine at Quercetin Modified Electrode Incorporating Graphene , 2011 .

[159]  Mingji Li,et al.  Electrochemical biosensor based on one-dimensional MgO nanostructures for the simultaneous determination of ascorbic acid, dopamine, and uric acid , 2014 .

[160]  Rosy,et al.  Graphene modified Palladium sensor for electrochemical analysis of norepinephrine in pharmaceuticals and biological fluids , 2014 .

[161]  R. Wightman,et al.  Real-time amperometric measurements of zeptomole quantities of dopamine released from neurons. , 2000, Analytical chemistry.

[162]  Qiyi Lu,et al.  Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. , 2014, Biosensors & bioelectronics.

[163]  M. Opallo,et al.  Film electrode prepared from oppositely charged silicate submicroparticles and carbon nanoparticles for selective dopamine sensing. , 2011, Biosensors & bioelectronics.

[164]  G. Hu,et al.  The nano-Au self-assembled glassy carbon electrode for selective determination of epinephrine in the presence of ascorbic acid. , 2007, Colloids and surfaces. B, Biointerfaces.

[165]  Shenhao Chen,et al.  Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode. , 2013, Colloids and surfaces. B, Biointerfaces.

[166]  Michael L Heien,et al.  Biocompatible PEDOT:Nafion composite electrode coatings for selective detection of neurotransmitters in vivo. , 2015, Analytical chemistry.

[167]  D. R. Shankaran,et al.  Simultaneous determination of ascorbic acid and dopamine at a sol-gel composite electrode , 2003 .

[168]  Khajak Berberian,et al.  Electrochemical imaging of fusion pore openings by electrochemical detector arrays. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[169]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[170]  S. Shahrokhian,et al.  Electrochemical preparation of over-oxidized polypyrrole/multi-walled carbon nanotube composite on glassy carbon electrode and its application in epinephrine determination , 2011 .

[171]  Rajendra N. Goyal,et al.  Comparison of spherical nanogold particles and nanogold plates for the oxidation of dopamine and ascorbic acid , 2009 .

[172]  Tianshu Zhou,et al.  A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite. , 2012, Biosensors & bioelectronics.

[173]  Erkang Wang,et al.  Synthesis and electrochemical applications of gold nanoparticles. , 2007, Analytica chimica acta.

[174]  Nataliya V. Roznyatovskaya,et al.  Conducting polymers in chemical sensors and arrays. , 2008, Analytica chimica acta.

[175]  Yuyan Shao,et al.  Graphene Based Electrochemical Sensors and Biosensors: A Review , 2010 .

[176]  Qingxiang Zeng,et al.  Electrochemistry of norepinephrine on carbon-coated nickel magnetic nanoparticles modified electrode and analytical applications. , 2010, Bioelectrochemistry.

[177]  Aneesha Badrinarayan,et al.  Aversive Stimuli Differentially Modulate Real-Time Dopamine Transmission Dynamics within the Nucleus Accumbens Core and Shell , 2012, The Journal of Neuroscience.

[178]  Lei Zhang,et al.  Poly(2-mercaptobenzothiazole) modified electrode for the simultaneous determinations of dopamine, uric acid and nitrite , 2014 .

[179]  Pierre Temple-Boyer,et al.  PEDOT-modified integrated microelectrodes for the detection of ascorbic acid, dopamine and uric acid , 2015 .

[180]  P. Hernández,et al.  Cucurbit[8]uril-based electrochemical sensors as detectors in flow injection analysis. Application to dopamine determination in serum samples , 2014 .

[181]  Dopamine and Glucose Sensors Based on Glassy Carbon Electrodes Modified with Melanic Polymers , 2004 .

[182]  Lina Abdullah Alshahrani,et al.  The fabrication of a Co (II) complex and multi-walled carbon nanotubes modified glass carbon electrode, and its application for the determination of dopamine , 2014 .

[183]  Lisa J. Mellander,et al.  Electrochemical probes for detection and analysis of exocytosis and vesicles. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[184]  C. Debiemme-Chouvy,et al.  Amorphous carbon nitride as an alternative electrode material in electroanalysis: simultaneous determination of dopamine and ascorbic acid. , 2013, Analytica chimica acta.

[185]  Yan Wang,et al.  A novel poly(taurine) modified glassy carbon electrode for the simultaneous determination of epinephrine and dopamine. , 2009, Colloids and surfaces. B, Biointerfaces.

[186]  G. Stuber,et al.  Neural encoding of cocaine‐seeking behavior is coincident with phasic dopamine release in the accumbens core and shell , 2009, The European journal of neuroscience.

[187]  T. Łuczak Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution , 2008 .

[188]  G. Shi,et al.  A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine. , 2013, Biosensors & bioelectronics.

[189]  G. Gabriel,et al.  Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: application to dopamine detection. , 2011, Biosensors & bioelectronics.

[190]  B. Swamy,et al.  Pretreated/Carbon paste electrode based voltammetric sensors for the detection of dopamine in presence of ascorbic acid and uric acid , 2013 .

[191]  T. Ohsaka,et al.  Electroanalytical applications of cationic self-assembled monolayers: square-wave voltammetric determination of dopamine and ascorbate. , 2001, Bioelectrochemistry.

[192]  Longli Lin,et al.  Hemin-graphene oxide-pristine carbon nanotubes complexes with intrinsic peroxidase-like activity for the detection of H2O2 and simultaneous determination for Trp, AA, DA, and UA , 2013 .

[193]  Xiangqin Lin,et al.  Novel choline and acetylcholine modified glassy carbon electrodes for simultaneous determination of dopamine, serotonin and ascorbic acid , 2004 .

[194]  M. Fotopoulou,et al.  Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography , 2002 .

[195]  S. Masoum,et al.  Three-dimensional voltammetry: a chemometrical analysis of electrochemical data for determination of dopamine in the presence of unexpected interference by a biosensor based on gold nanoparticles. , 2014, Analytical chemistry.

[196]  D. Arrigan,et al.  Electrochemical detection of dopamine using arrays of liquid-liquid micro-interfaces created within micromachined silicon membranes. , 2008, Analytica chimica acta.

[197]  Xinsheng Liu,et al.  Selective and sensitive detection of dopamine in the presence of ascorbic acid by molecular sieve/ionic liquids composite electrode , 2011 .

[198]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[199]  R. Wightman,et al.  Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. , 2000, Analytical chemistry.

[200]  N. Jaffrezic‐Renault,et al.  Selective Detection of Dopamine in Presence of Ascorbic Acid by Use of Glassy‐Carbon Electrode Modified with Amino‐β‐Cyclodextrin and Carbon Nanotubes , 2014 .

[201]  J. FRASER STODDART,et al.  Noncovalent functionalization of single-walled carbon nanotubes. , 2009, Accounts of chemical research.

[202]  Ralph N. Adams,et al.  Nafion-coated electrodes with high selectivity for CNS electrochemistry , 1984, Brain Research.

[203]  Xiangqin Lin,et al.  Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine , 2005 .

[204]  Zhiyong Wang,et al.  Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine , 2007 .

[205]  Yukari Sato,et al.  Electrochemical characteristics of a gold electrode modified with a self-assembled monolayer of ferrocenylalkanethiols , 1991 .

[206]  Maoguo Li,et al.  Fabrication of Fc-SWNTs modified glassy carbon electrode for selective and sensitive determination of dopamine in the presence of AA and UA , 2007 .

[207]  R. Wightman,et al.  Simultaneous monitoring of dopamine concentration at spatially different brain locations in vivo. , 2010, Biosensors & bioelectronics.

[208]  R. Wightman,et al.  Electrochemical Analysis of Neurotransmitters. , 2015, Annual review of analytical chemistry.

[209]  R. Ramaraj,et al.  Simultaneous determination of ascorbic acid, dopamine and serotonin at poly(phenosafranine) modified electrode , 2003 .

[210]  M. Dávila,et al.  Study of the composite electrodes carbon-polyvinyl chloride and carbon-polyvinyl chloride/Nafion by ex situ and in situ methods , 2001 .

[211]  K. Ozoemena,et al.  Efficient Electrocatalytic Detection of Epinephrine at Gold Electrodes Modified with Self‐Assembled Metallo‐Octacarboxyphthalocyanine Complexes , 2008 .

[212]  Shifeng Hou,et al.  Highly Sensitive and Selective Dopamine Biosensor Fabricated with Silanized Graphene , 2010 .

[213]  Yang Wang,et al.  Amperometric detection of dopamine in human serum by electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers. , 2013, Biosensors & bioelectronics.

[214]  K. Olson,et al.  Neurotransmitters excreted in the urine as biomarkers of nervous system activity: Validity and clinical applicability , 2011, Neuroscience & Biobehavioral Reviews.

[215]  Jean-Yves Hihn,et al.  Multi-analyte determination of dopamine and catechol at single-walled carbon nanotubes – Conducting polymer – Tyrosinase based electrochemical biosensors , 2015 .

[216]  Sahar Rashid-Nadimi,et al.  Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films , 2005 .

[217]  Kun Wang,et al.  Electrocatalytic Oxidation of Dopamine and Ascorbic Acid on Carbon Paste Electrode Modified with Nanosized Cobalt Phthalocyanine Particles: Simultaneous Determination in the Presence of CTAB , 2006 .

[218]  C. A. Marsden,et al.  In vivo voltammetry—Present electrodes and methods , 1988, Neuroscience.

[219]  Tianhui Xu,et al.  Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide , 2014 .

[220]  X. Xia,et al.  3-Mercaptopropylphosphonic acid modified gold electrode for electrochemical detection of dopamine. , 2009, Bioelectrochemistry.

[221]  X. Xia,et al.  Simultaneous voltammetric determination of norepinephrine, ascorbic acid and uric acid on polycalconcarboxylic acid modified glassy carbon electrode. , 2008, Biosensors & bioelectronics.

[222]  Jun Chen,et al.  Sensitive and selective dopamine determination in human serum with inkjet printed Nafion/MWCNT chips , 2013 .

[223]  M. Stelzle,et al.  Application of PEDOT‐CNT Microelectrodes for Neurotransmitter Sensing , 2014 .

[224]  A. Oliveira‐Brett,et al.  Electrochemical detection of in situ adriamycin oxidative damage to DNA. , 2002, Talanta.

[225]  Chengcheng Li,et al.  Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles. , 2011, The Analyst.

[226]  R. Saraf,et al.  Fabrication and Properties of Redox Ion Doped Few Monolayer Thick Polyelectrolyte Film for Electrochemical Biosensors at High Sensitivity and Specificity , 2013 .

[227]  H. H. Monfared,et al.  Electrocatalytic oxidation of ascorbic acid and simultaneous determination of ascorbic acid and dopamine at a bis(4′-(4-pyridyl)-2,2′:6′,2′′-terpyridine)iron(II) thiocyanate carbon past modified electrode , 2009 .

[228]  Weihua Cai,et al.  Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: A high performance flexible sensor , 2014 .

[229]  Blumer,et al.  Pharmacology of inotropic agents in infants and children. , 2000, Progress in pediatric cardiology.

[230]  R. Goyal,et al.  Electrochemical Sensor for the Determination of Dopamine in Presence of High Concentration of Ascorbic Acid Using a Fullerene‐C60 Coated Gold Electrode , 2008 .

[231]  J. Gooding,et al.  Electrochemical approach of anticancer drugs--DNA interaction. , 2005, Journal of pharmaceutical and biomedical analysis.

[232]  D. Tse,et al.  Potential oxidative pathways of brain catecholamines. , 1976, Journal of medicinal chemistry.

[233]  Y. Chai,et al.  Deposited gold nanocrystals enhanced porous PTCA–Cys layer for simultaneous detection of ascorbic acid, dopamine and uric acid , 2013 .

[234]  Navid Nasirizadeh,et al.  Electrosynthesis of an imidazole derivative and its application as a bifunctional electrocatalyst for simultaneous determination of ascorbic acid, adrenaline, acetaminophen, and tryptophan at a multi-wall carbon nanotubes modified electrode surface. , 2013, Biosensors & bioelectronics.

[235]  M. Ramírez-Silva,et al.  Electrochemical quantification of dopamine in the presence of ascorbic acid and uric acid using a simple carbon paste electrode modified with SDS micelles at pH 7 , 2012 .

[236]  P. Zhou,et al.  Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd-Pt nanoparticles. , 2013, Colloids and surfaces. B, Biointerfaces.

[237]  B. Liu,et al.  Dopamine molecularly imprinted electrochemical sensor based on graphene–chitosan composite , 2012 .

[238]  H. Beitollahi,et al.  Selective voltammetric determination of norepinephrine in the presence of acetaminophen and folic acid at a modified carbon nanotube paste electrode , 2011 .

[239]  Young Je Yoo,et al.  Amperometric detection of dopamine based on tyrosinase-SWNTs-Ppy composite electrode. , 2009, Talanta.

[240]  H. Luo,et al.  Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. , 2006, Biosensors & bioelectronics.

[241]  Krystyna Jackowska,et al.  New trends in the electrochemical sensing of dopamine , 2012, Analytical and Bioanalytical Chemistry.

[242]  Hongyuan Chen,et al.  Selective detection of dopamine based on the unique property of gold nanofilm , 2009 .

[243]  Yuzhong Zhang,et al.  Poly(isonicotinic acid) modified glassy carbon electrode for electrochemical detection of norepinephrine , 2002 .

[244]  Jianbin Zheng,et al.  Sodium dodecyl sulfate-modified carbon paste electrodes for selective determination of dopamine in the presence of ascorbic acid. , 2007, Bioelectrochemistry.

[245]  M. Lindau,et al.  Improved surface-patterned platinum microelectrodes for the study of exocytotic events. , 2009, Analytical chemistry.

[246]  Electrochemical studies of the oxidation pathways of catecholamines. , 1967 .

[247]  A. Stephen,et al.  New electrochemical sensor based on Ni-doped V2O5 nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level , 2014 .

[248]  Yong Cheng,et al.  Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode. , 2014, Talanta.

[249]  Xinsheng Liu,et al.  Square Wave Voltammetry for Selective Detection of Dopamine Using Polyglycine Modified Carbon Ionic Liquid Electrode , 2011 .

[250]  Weihua Tang,et al.  Gold Nanoparticles‐β‐Cyclodextrin‐Chitosan‐Graphene Modified Glassy Carbon Electrode for Ultrasensitive Detection of Dopamine and Uric Acid , 2014 .

[251]  A. Hubbard,et al.  Differential double pulse voltammetry at chemically modified platinum electrodes for in vivo determination of catecholamines. , 1976, Analytical chemistry.

[252]  Wei Sun,et al.  Graphene nano sheet-fabricated electrochemical sensor for the determination of dopamine in the presence of ascorbic acid using cetyltrimethylammonium bromide as the discriminating agent , 2012 .

[253]  Giovanna Marrazza,et al.  Electrochemical DNA biosensor for environmental monitoring , 2001 .

[254]  Andrzej Olszyna,et al.  Dopamine Oxidation at Per(6‐deoxy‐6‐thio)‐α‐Cyclodextrin Monolayer Modified Gold Electrodes , 2006 .

[255]  P. Unwin,et al.  Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine. , 2013, Analytical chemistry.

[256]  A. Ewing,et al.  Chemical analysis of single cells. , 2011, Analytical chemistry.

[257]  Jyh-Myng Zen,et al.  Screen-printed ionic liquid/preanodized carbon electrode: Effective detection of dopamine in the presence of high concentration of ascorbic acid , 2011 .

[258]  T. E. M. Nancy,et al.  Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid , 2014 .

[259]  Maria Dimaki,et al.  Fabrication and Characterisation of Membrane-Based Gold Electrodes , 2015 .

[260]  R. Wightman,et al.  Resolving neurotransmitters detected by fast-scan cyclic voltammetry. , 2004, Analytical chemistry.

[261]  Yuzhong Zhang,et al.  Poly(p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid , 2005 .

[262]  H. Pang,et al.  Electrochemical detection of dopamine using water-soluble sulfonated graphene , 2013 .

[263]  T. Yoshitake,et al.  Liquid chromatography method for detecting native fluorescent bioamines in urine using post-column derivatization and intramolecular FRET detection. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[264]  Wanzhi. Wei,et al.  Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin , 2006, Analytical and bioanalytical chemistry.

[265]  H. García,et al.  2,4,6-triphenylpyrylium ion encapsulated into zeolite Y as a selective electrode for the electrochemical determination of dopamine in the presence of ascorbic acid. , 2002, Analytical chemistry.

[266]  D. Arrigan,et al.  Selective voltammetric detection of dopamine in the presence of ascorbate. , 2004, Chemical communications.

[267]  R. Ramaraj,et al.  Electrochemically deposited nanostructured platinum on Nafion coated electrode for sensor applications , 2005 .

[268]  Fuan Wang,et al.  Sensitive Biomimetic Sensor Based on Molecular Imprinting at Functionalized Indium Tin Oxide Electrodes , 2007 .

[269]  Liqin Yan,et al.  Pyrrole-phenylboronic acid: a novel monomer for dopamine recognition and detection based on imprinted electrochemical sensor. , 2015, Biosensors & bioelectronics.

[270]  G. Rivas,et al.  Selective detection of dopamine in the presence of ascorbic acid using carbon nanotube modified screen-printed electrodes. , 2010, Talanta.

[271]  Carlos Rodríguez-Caso,et al.  Biogenic Amines and Polyamines: Similar Biochemistry for Different Physiological Missions and Biomedical Applications , 2003, Critical reviews in biochemistry and molecular biology.

[272]  M. Agazadeh,et al.  Electrocatalytic oxidation of dopamine at aluminum electrode modified with nickel pentacyanonitrosylferrate films, synthesized by electroless procedure , 2003 .

[273]  Wei-Li Wu,et al.  Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode. , 2008, Colloids and surfaces. B, Biointerfaces.

[274]  M. Salavati‐Niasari,et al.  Electrochemical study of new self-assembled monolayer of 2-hydroxy-N′1-[(E)-1-(3-methyl-2-thienyl) methylidene] benzohydrazide on gold electrode as an epinephrine sensor element , 2012 .

[275]  T. Łuczak Gold and Nanogold Electrodes Modified with Gold Nanoparticles and meso‐2,3‐Dimercaptosuccinic Acid for the Simultaneous, Sensitive and Selective Determination of Dopamine and Its Biogenic Interferents , 2014 .

[276]  Ning Xia,et al.  Amplified voltammetric detection of dopamine using ferrocene-capped gold nanoparticle/streptavidin conjugates. , 2013, Biosensors & bioelectronics.

[277]  Christian Amatore,et al.  Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress. , 2008, Chemical reviews.

[278]  J. M. May,et al.  Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. , 2009, Free radical biology & medicine.

[279]  Xiuhua Zhang,et al.  Simultaneous determination of epinephrine and ascorbic acid at the electrochemical sensor of triazole SAM modified gold electrode , 2006 .

[280]  G. Suresh,et al.  Selective determination of dopamine using unmodified, exfoliated graphite electrodes , 2004 .

[281]  V. Mareček,et al.  The partition of amines between water and an organic solvent phase , 1984 .

[282]  Eugenio Vilanova,et al.  A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures. , 2007, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[283]  G. Alarcón-Ángeles,et al.  Study on the stability of adrenaline and on the determination of its acidity constants. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[284]  A. Ewing,et al.  Carbon-ring microelectrode arrays for electrochemical imaging of single cell exocytosis: fabrication and characterization. , 2012, Analytical chemistry.

[285]  I. Fritsch,et al.  Detection of dopamine in the presence of excess ascorbic acid at physiological concentrations through redox cycling at an unmodified microelectrode array , 2013, Analytical and Bioanalytical Chemistry.

[286]  Lei Zhang,et al.  Simultaneous determination of dopamine and ascorbic acid at an in-site functionalized self-assembled monolayer on gold electrode , 2004 .

[287]  Shengshui Hu,et al.  Functionalized Multiwalled Carbon Nanotubes Through In Situ Electropolymerization of Brilliant Cresyl Blue for Determination of Epinephrine , 2008 .

[288]  B. Rezaei,et al.  Simultaneous determination of ascorbic acid, epinephrine, and uric acid by differential pulse voltammetry using poly(3,3′-bis[N,N-bis(carboxymethyl)aminomethyl]-o-cresolsulfonephthalein) modified glassy carbon electrode , 2010 .

[289]  Shufeng Liu,et al.  Carbon-nanotube-modified glassy carbon electrode for simultaneous determination of dopamine, ascorbic acid and uric acid: The effect of functional groups , 2012 .

[290]  Hongwu Zhang,et al.  Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. , 2004, Biosensors & bioelectronics.

[291]  Selvakumar Palanisamy,et al.  Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode. , 2013, Journal of colloid and interface science.

[292]  Y. Chai,et al.  Facile synthesis of graphene hybrid tube-like structure for simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan. , 2012, Analytica chimica acta.

[293]  O. Chailapakul,et al.  Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine. , 2013, Analytica chimica acta.

[294]  B. J. Venton,et al.  Rapid, sensitive detection of neurotransmitters at microelectrodes modified with self-assembled SWCNT forests. , 2012, Analytical chemistry.

[295]  N. Nasirizadeh,et al.  Voltammetric studies of an oracet blue modified glassy carbon electrode and its application for the simultaneous determination of dopamine, ascorbic acid and uric acid , 2006 .

[296]  A. Michael,et al.  Microdialysis probes alter presynaptic regulation of dopamine terminals in rat striatum , 2012, Journal of Neuroscience Methods.

[297]  Chen-Zhong Li,et al.  Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications , 2009 .

[298]  A. Khoshroo,et al.  High sensitive sensor based on functionalized carbon nanotube/ionic liquid nanocomposite for simultaneous determination of norepinephrine and serotonin , 2014 .

[299]  H. Chang,et al.  Electrochemically Degraded Dopamine Film for the Determination of Dopamine , 2006 .

[300]  Marek Trojanowicz,et al.  Analytical applications of carbon nanotubes : a review , 2006 .

[301]  S. Hocevar,et al.  Preparation and characterization of carbon paste micro-electrode based on carbon nanoparticles. , 2007, Talanta.

[302]  T. Łuczak Electrocatalytic Application of an Overoxidized Dopamine Film Prepared on a Gold Electrode Surface to Selective Epinephrine Sensing , 2008 .

[303]  Ming Zhou,et al.  Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system. , 2008, Analytical chemistry.

[304]  F. Marken,et al.  Ultrathin Carbon Nanoparticle Composite Film Electrodes: Distinguishing Dopamine and Ascorbate , 2007 .

[305]  Protiva Rani Roy,et al.  Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N,N-dimethylaniline)-modified electrodes. , 2003, Bioelectrochemistry.

[306]  C. Pereira,et al.  Electrochemical Sensing of Catecholamines at the Water/ 1,6-Dichlorohexane Interface , 2013 .

[307]  Shishan Wu,et al.  Au nanoparticles decorated polypyrrole/reduced graphene oxide hybrid sheets for ultrasensitive dopamine detection , 2014 .

[308]  R. Adams,et al.  Probing brain chemistry with electroanalytical techniques. , 1976, Analytical chemistry.

[309]  Lisa J. Mellander,et al.  Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays. , 2011, Analytical chemistry.

[310]  Yuzhong Zhang,et al.  Determination of Dopamine in the Presence of Ascorbic Acid Using Poly(hippuric acid) Modified Glassy Carbon Electrode , 2002 .

[311]  S. Andreescu,et al.  Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. , 2010, Analytical chemistry.

[312]  H. Qiu,et al.  A novel nanoporous gold modified electrode for the selective determination of dopamine in the presence of ascorbic acid. , 2009, Colloids and surfaces. B, Biointerfaces.

[313]  Ning Gan,et al.  A microchip-based flow injection-amperometry system with mercaptopropionic acid modified electroless gold microelectrode for the selective determination of dopamine. , 2008, Analytica chimica acta.

[314]  Hao‐Li Zhang,et al.  Nanomolar detection of dopamine in the presence of ascorbic acid at β-cyclodextrin/graphene nanocomposite platform , 2010 .

[315]  Sunita Bishnoi,et al.  A novel multi-walled carbon nanotube modified sensor for the selective determination of epinephrine in smokers , 2011 .

[316]  Xiaoyan Ji,et al.  Simultaneous determination of ascorbic acid, dopamine and uric acid using poly(4-aminobutyric acid) modified glassy carbon electrode , 2013 .

[317]  Jiaxing Chen,et al.  Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine , 2012 .

[318]  Ying Wang,et al.  Application of graphene-modified electrode for selective detection of dopamine , 2009 .

[319]  S. Kitazawa,et al.  Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. , 2007, Analytical chemistry.

[320]  A. Taheri,et al.  Nafion/Ni(OH)2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid , 2013 .

[321]  Liping Zhang,et al.  A Novel Functionalized Single‐Wall Carbon Nanotube Modified Electrode and Its Application in Determination of Dopamine and Uric Acid in the Presence of High Concentrations of Ascorbic Acid , 2007 .

[322]  Simultaneous electrochemical detection of dopamine and ascorbic acid at a poly(p-toluene sulfonic acid) modified electrode , 2007 .

[323]  Guosong Lai,et al.  Electrocatalysis and Voltammetric Determination of Dopamine at a Calix[4]arene Crown‐4 Ether Modified Glassy Carbon Electrode , 2007 .

[324]  Bin Fang,et al.  Fabrication of Fe3O4 Nanoparticles Modified Electrode and Its Application for Voltammetric Sensing of Dopamine , 2005 .

[325]  J. Kehr,et al.  High-sensitive liquid chromatographic method for determination of neuronal release of serotonin, noradrenaline and dopamine monitored by microdialysis in the rat prefrontal cortex , 2004, Journal of Neuroscience Methods.

[326]  S. H. Lee,et al.  Resolution of dopamine and ascorbic acid using nickel(II) complex polymer-modified electrodes , 2007 .

[327]  A. Pasquarelli,et al.  Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells. , 2010, Biosensors & bioelectronics.

[328]  Y. Yang One step electrosynthesis of polyacrylamide crosslinked by reduced graphene oxide and its application in the simultaneous determination of dopamine and uric acid , 2014 .

[329]  David P. Daberkow,et al.  Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals , 2013, The Journal of Neuroscience.

[330]  Yuqing Zhao,et al.  Self-assembly of gold nanoparticles for the voltammetric sensing of epinephrine , 2006 .

[331]  Xiuli Niu,et al.  Highly sensitive and selective dopamine biosensor based on 3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wall carbon nanotubes/ionic liquid composite film modified electrode. , 2013, Biosensors & bioelectronics.

[332]  Shen-ming Chen,et al.  Separation and concentration effect of f-MWCNTs on electrocatalytic responses of ascorbic acid, dopamine and uric acid at f-MWCNTs incorporated with poly (neutral red) composite films , 2007 .

[333]  Zülfikar Temoçin,et al.  Modification of glassy carbon electrode in basic medium by electrochemical treatment for simultaneous determination of dopamine, ascorbic acid and uric acid , 2013 .

[334]  Tao Yang,et al.  A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment. , 2007, Analytical biochemistry.

[335]  B. Jill Venton,et al.  Psychoanalytical Electrochemistry: Dopamine and Behavior , 2003 .

[336]  J. Luong,et al.  Selective Detection of Dopamine Using Glassy Carbon Electrode Modified by a Combined Electropolymerized Permselective Film of Polytyramine and Polypyrrole-1-propionic Acid , 2009 .

[337]  Wolfgang Schuhmann,et al.  Single-cell microelectrochemistry. , 2007, Angewandte Chemie.

[338]  Chen-zhong Li,et al.  Simultaneous detection of dopamine, ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube biosensors. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[339]  M. Afrasiabi,et al.  A Sensitive Simultaneous Determination of Epinephrine and Piroxicam Using a Glassy Carbon Electrode Modified with a Nickel Hydroxide Nanoparticles/Multiwalled Carbon Nanotubes Composite , 2012 .

[340]  Feng-Bo Zhang,et al.  One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine , 2011 .

[341]  Susanne Rath,et al.  Electrochemical behavior of dopamine at a 3,3'-dithiodipropionic acid self-assembled monolayers. , 2007, Talanta.

[342]  I. Cesarino,et al.  Biosensor Based on Electrocodeposition of Carbon Nanotubes/Polypyrrole/Laccase for Neurotransmitter Detection , 2013 .

[343]  Dehua Deng,et al.  Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine , 2012, Microchimica Acta.

[344]  C. Pereira,et al.  Electrochemical study of dopamine and noradrenaline at the water/1,6-dichlorohexane interface. , 2010, Physical chemistry chemical physics : PCCP.

[345]  Shen-ming Chen,et al.  The electrocatalytic properties of biological molecules using polymerized luminol film-modified electrodes , 2002 .

[346]  Xin Wang,et al.  Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissue. , 2013, ACS nano.

[347]  A. Alizadeh,et al.  Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode , 2013 .

[348]  M. Sastry,et al.  DNA-mediated electrostatic assembly of gold nanoparticles into linear arrays by a simple drop-coating procedure , 2001 .

[349]  Shen-ming Chen,et al.  Electrochemical self-assembly of nordihydroguaiaretic acid/Nafion modified electrodes and their electrocatalytic properties for catecholamines and ascorbic acid , 2005 .

[350]  Lei Zhang,et al.  Nano-Cu/PSA III modified glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid , 2013 .

[351]  P. Phillips,et al.  Kappa Opioid Receptor Activation Potentiates the Cocaine-Induced Increase in Evoked Dopamine Release Recorded In Vivo in the Mouse Nucleus Accumbens , 2014, Neuropsychopharmacology.

[352]  Yoshitaka Gushikem,et al.  Simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid by methylene blue adsorbed on a phosphorylated zirconia-silica composite electrode , 2008 .

[353]  Maotian Xu,et al.  Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes. , 2012, Talanta.

[354]  N. Nasirizadeh,et al.  Electrochemical properties of a tetrabromo-p-benzoquinone modified carbon paste electrode. Application to the simultaneous determination of ascorbic acid, dopamine and uric acid , 2005 .

[355]  Lihua Shen,et al.  Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material , 2003 .

[356]  P. Garris,et al.  Regional Differences in Dopamine Release, Uptake, and Diffusion Measured by Fast-Scan Cyclic Voltammetry , 1995 .

[357]  Itaru Honma,et al.  Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode. , 2007, Biosensors & bioelectronics.

[358]  P Nagaraja,et al.  A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations. , 2001, Talanta.

[359]  D. Souto,et al.  Study of the effects of surface pKa and electron transfer kinetics of electroactive 4-nitrothiophenol/4-mercaptobenzoic acid binary SAM on the simultaneous determination of epinephrine and uric acid , 2013 .

[360]  Jongwon Kim,et al.  Electrochemical behavior of dopamine and ascorbic acid at dendritic Au rod surfaces: Selective detection of dopamine in the presence of high concentration of ascorbic acid , 2012 .

[361]  Lei Zhang,et al.  Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid , 2005, Analytical and bioanalytical chemistry.

[362]  Yongxin Li,et al.  Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. , 2007, Talanta.

[363]  Ke-Jing Huang,et al.  Hydrothermal preparation and electrochemical sensing properties of TiO(2)-graphene nanocomposite. , 2011, Colloids and surfaces. B, Biointerfaces.

[364]  Qiang Zhao,et al.  Electrochemical investigation of dopamine at the water/1,2-dichloroethane interface. , 2004, Analytical chemistry.

[365]  A. Telefoncu,et al.  A sensitive determination of dopamine in the presence of ascorbic acid using a nafion-coated clinoptilolite-modified carbon paste electrode , 2005, Analytical and bioanalytical chemistry.

[366]  Mihaela Ghita,et al.  Cyclic and pulse voltammetric study of dopamine at the interface between two immiscible electrolyte solutions. , 2005, Biosensors & bioelectronics.

[367]  Guangfeng Wang,et al.  Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode , 2009 .

[368]  Z. Dursun,et al.  Simultaneous determination of ascorbic acid, epinephrine and uric acid at over-oxidized poly(p-aminophenol) film modified electrode , 2013 .

[369]  X. Xia,et al.  Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. , 2012, Biosensors & bioelectronics.

[370]  Yi Lin,et al.  Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine , 2014 .

[371]  Andrew G Ewing,et al.  In Vitro Electrochemistry of Biological Systems. , 2008, Annual review of analytical chemistry.

[372]  C. Nicholson,et al.  Amphetamine Distorts Stimulation-Dependent Dopamine Overflow: Effects on D2 Autoreceptors, Transporters, and Synaptic Vesicle Stores , 2001, The Journal of Neuroscience.

[373]  Fangke Zhan,et al.  Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes , 2013 .

[374]  Yumin Wu,et al.  Modification of carbon aerogel electrode with molecularly imprinted polypyrrole for electrochemical determination of dopamine , 2015 .

[375]  H. Karimi-Maleh,et al.  Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N'-phenyl-hydrazinecarbothioamide. , 2008, Analytical chemistry.

[376]  Abolhassan Noori,et al.  A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. , 2011, Biosensors & bioelectronics.

[377]  Keqin Deng,et al.  Noncovalent nanohybrid of cobalt tetraphenylporphyrin with graphene for simultaneous detection of ascorbic acid, dopamine, and uric acid , 2013 .

[378]  Junping Dong,et al.  A highly selective and sensitive dopamine and uric acid biosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid , 2010, Analytical and bioanalytical chemistry.

[379]  Jie Li,et al.  A novel label-free electrochemical aptasensor based on graphene-polyaniline composite film for dopamine determination. , 2012, Biosensors & bioelectronics.

[380]  Jianrong Chen,et al.  Simultaneous determination of dopamine and uric acid using layer-by-layer graphene and chitosan assembled multilayer films. , 2013, Talanta.

[381]  T. Łuczak 1,4‐Michael Addition – The Analytical Way for Quantitative Sensing of Neurotransmitter at Bare Gold Electrode in Physiological Solution in the Presence of Interfering Biogenic Compounds , 2013 .

[382]  P. Garris,et al.  Functional reorganization of the presynaptic dopaminergic terminal in parkinsonism , 2011, Neuroscience.

[383]  Andrew G. Ewing,et al.  Highlights of selected recent electrochemical measurements in living systems , 2012 .

[384]  Haiyan Zhang,et al.  Electrochemically sensitive determination of dopamine and uric acid based on poly (beryllon II)/nanowires-LaPO4 modified carbon paste electrode , 2013 .

[385]  Veerappan Mani,et al.  Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. , 2013, Talanta.

[386]  M. D. Valle,et al.  Selective electrochemical determination of dopamine, using a poly(3,4-ethylenedioxythiophene)/polydopamine hybrid film modified electrode , 2013 .

[387]  A. Ramanavičius,et al.  Electrochemical sensors based on conducting polymer—polypyrrole , 2006 .

[388]  Shen-ming Chen,et al.  Electropreparation of Poly(benzophenone-4) Film Modified Electrode and Its Electrocatalytic Behavior Towards Dopamine, Ascorbic Acid and Nitrite , 2006 .

[389]  R. Madhuri,et al.  Multiwalled carbon nanotubes bearing 'terminal monomeric unit' for the fabrication of epinephrine imprinted polymer-based electrochemical sensor. , 2013, Biosensors & bioelectronics.

[390]  Daryl R. Kipke,et al.  Implantable microelectrode arrays for simultaneous electrophysiological and neurochemical recordings , 2008, Journal of Neuroscience Methods.

[391]  Kurt V Gothelf,et al.  RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine. , 2013, Analytical chemistry.

[392]  M. Terranova,et al.  Functionalized Single‐Walled Carbon Nanotubes Modified Microsensors for the Selective Response of Epinephrine in Presence of Ascorbic Acid , 2007 .

[393]  Y. Chu,et al.  Highly sensitive determination of epinephrine by a MnO2/Nafion modified glassy carbon electrode , 2012 .

[394]  Rosy,et al.  Molecularly imprinted sensor based on o-aminophenol for the selective determination of norepinephrine in pharmaceutical and biological samples. , 2014, Talanta.

[395]  S. Yao,et al.  A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode. , 2009, Biosensors & bioelectronics.

[396]  Shen-Ming Chen,et al.  Palladium nanoparticles modified electrode for the selective detection of catecholamine neurotransmitters in presence of ascorbic acid. , 2009, Bioelectrochemistry.

[397]  Liping Lu,et al.  Fabrication of layer-by-layer deposited multilayer films containing DNA and gold nanoparticle for norepinephrine biosensor , 2004 .

[398]  Juan Li,et al.  Fabrication of a novel laccase biosensor based on silica nanoparticles modified with phytic acid for sensitive detection of dopamine , 2014 .

[399]  R. Wightman,et al.  Microelectrodes for the measurement of catecholamines in biological systems. , 1996, Analytical chemistry.

[400]  Sara R. Jones,et al.  Extended access of cocaine self‐administration results in tolerance to the dopamine‐elevating and locomotor‐stimulating effects of cocaine , 2014, Journal of neurochemistry.

[401]  Zhang Chunyu,et al.  Highly Selective and Sensitive Determination of Dopamine in the Presence of Ascorbic Acid Using a 3D Graphene Foam Electrode , 2014 .

[402]  M. Mazloum‐Ardakani,et al.  New strategy for simultaneous and selective voltammetric determination of norepinephrine, acetaminophen and folic acid using ZrO2 nanoparticles-modified carbon paste electrode , 2010 .

[403]  Yongxin Li,et al.  Simultaneous determination of dopamine and serotonin by use of covalent modification of 5-hydroxytryptophan on glassy carbon electrode , 2009 .

[404]  M. Mirski,et al.  Patternable nanowire sensors for electrochemical recording of dopamine. , 2009, Analytical chemistry.

[405]  Yibin Ying,et al.  Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. , 2012, Biosensors & bioelectronics.

[406]  H. Dastangoo,et al.  Simultaneous determination of dopamine and its oxidized product (aminochrom), by hydrodynamic amperometry and anodic stripping voltammetry, using the metallic palladium and uranalyl hexacyanoferrate coated aluminum electrodes. , 2010, Biosensors & bioelectronics.

[407]  Sunita Bishnoi,et al.  Simultaneous determination of epinephrine and norepinephrine in human blood plasma and urine samples using nanotubes modified edge plane pyrolytic graphite electrode. , 2011, Talanta.

[408]  Fwu-Shan Sheu,et al.  Microelectrode array biochip: tool for in vitro drug screening based on the detection of a drug effect on dopamine release from PC12 cells. , 2006, Analytical chemistry.

[409]  M. Rice,et al.  Ion exchange and transport of neurotransmitters in nation films on conventional and microelectrode surfaces , 1985 .

[410]  Arto Heiskanen,et al.  On-Chip Determination of Dopamine Exocytosis Using Mercaptopropionic Acid Modified Microelectrodes , 2007 .

[411]  Mark R. Anderson,et al.  Dopamine Adsorption at Surface Modified Carbon-Fiber Electrodes , 2001 .

[412]  R. Wightman,et al.  Dopamine release is heterogeneous within microenvironments of the rat nucleus accumbens , 2007, The European journal of neuroscience.

[413]  Bo Zhang,et al.  Spatially and temporally resolved single-cell exocytosis utilizing individually addressable carbon microelectrode arrays. , 2008, Analytical chemistry.

[414]  Xinhua Lin,et al.  Characterization of poly(5-hydroxytryptamine)-modified glassy carbon electrode and applications to sensing of norepinephrine and uric acid in preparations and human urines , 2013 .

[415]  Huimin Zhang,et al.  Studies of the electrochemical behavior of epinephrine at a homocysteine self-assembled electrode. , 2002, Talanta.

[416]  Hyoung Soon Han,et al.  Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin , 2014 .

[417]  S. Dong,et al.  Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. , 2009, Analytical chemistry.

[418]  R. Carelli,et al.  Nucleus accumbens cell firing and rapid dopamine signaling during goal-directed behaviors in rats , 2004, Neuropharmacology.

[419]  Jun Wang,et al.  Individually addressable thin-film ultramicroelectrode array for spatial measurements of single vesicle release. , 2013, Analytical chemistry.

[420]  B. Ogorevc,et al.  Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber. , 2001, Analytical chemistry.

[421]  Xintang Huang,et al.  Electrochemical detection of dopamine on a Ni/Al layered double hydroxide modified carbon ionic liquid electrode , 2010 .

[422]  B. Rezaei,et al.  Voltammetric behavior of dopamine at a glassy carbon electrode modified with NiFe(2)O(4) magnetic nanoparticles decorated with multiwall carbon nanotubes. , 2014, Materials science & engineering. C, Materials for biological applications.

[423]  P. Pandey,et al.  Electrochemical sensing of dopamine and pyrogallol on mixed analogue of Prussian blue nanoparticles modified electrodes—Role of transition metal on the electrocatalysis and peroxidase mimetic activity , 2013 .

[424]  I. Rubinstein,et al.  Organized self-assembling monolayers on electrodes. 2. Monolayer-based ultramicroelectrodes for the study of very rapid electrode kinetics , 1987 .

[425]  Andrew G. Ewing,et al.  Spatial Resolution of Single-Cell Exocytosis by Microwell-Based Individually Addressable Thin Film Ultramicroelectrode Arrays , 2014, Analytical chemistry.

[426]  K. Ho,et al.  Fabrication of a molecularly imprinted polymer sensor by self-assembling monolayer/mediator system. , 2009, Analytica chimica acta.

[427]  H. Luo,et al.  Caffeic Acid‐Modified Glassy Carbon Electrode for the Simultaneous Determination of Epinephrine and Dopamine , 2007 .

[428]  S. Shahrokhian,et al.  Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid , 2007 .

[429]  D. Tasis,et al.  Current progress on the chemical modification of carbon nanotubes. , 2010, Chemical reviews.

[430]  G. Palleschi,et al.  Modified Screen‐Printed Electrodes Based on Oxidized Graphene Nanoribbons for the Selective Electrochemical Detection of Several Molecules , 2012 .

[431]  B. Ganjipour,et al.  Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode. , 2009, Bioelectrochemistry.

[432]  Ling Xiang,et al.  Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors , 2007 .

[433]  L. Echegoyen,et al.  Electrochemical oxidation and determination of dopamine in the presence of uric and ascorbic acids using a carbon nano-onion and poly(diallyldimethylammonium chloride) composite , 2012 .

[434]  D. J. Harrison,et al.  Preliminary in vivo biocompatibility studies on perfluorosulphonic acid polymer membranes for biosensor applications. , 1991, Biomaterials.

[435]  Chia-Liang Sun,et al.  The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. , 2011, Biosensors & bioelectronics.

[436]  J. Fei,et al.  Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode , 2009 .

[437]  Xiaoli Zhang,et al.  Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites , 2012 .

[438]  Lingling Xie,et al.  Electrochemical biosensor based on reduced graphene oxide and Au nanoparticles entrapped in chitosan/silica sol–gel hybrid membranes for determination of dopamine and uric acid , 2012 .

[439]  M. Taei,et al.  Simultaneous determination of norepinephrine, acetaminophen and tyrosine by differential pulse voltammetry using Au-nanoparticles/poly(2-amino-2-hydroxymethyl-propane-1,3-diol) film modified glassy carbon electrode. , 2014, Colloids and surfaces. B, Biointerfaces.

[440]  Lei Zhang,et al.  Attachment of gold nanoparticles to glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid and dopamine , 2005 .

[441]  R. Hosseinzadeh,et al.  Effect of cetyltrimethyl ammonium bromide (CTAB) in determination of dopamine and ascorbic acid using carbon paste electrode modified with tin hexacyanoferrate. , 2009, Colloids and surfaces. B, Biointerfaces.

[442]  Eva Baldrich,et al.  Electrochemical detection of dopamine using streptavidin-coated magnetic particles and carbon nanotube wiring , 2014 .

[443]  R. Wightman,et al.  In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast‐scan cyclic voltammetry , 2011, Journal of neurochemistry.

[444]  P. Unwin,et al.  Trace level cyclic voltammetry facilitated by single-walled carbon nanotube network electrodes. , 2007, Journal of the American Chemical Society.

[445]  Ying Xu,et al.  Immobilization of DNA on a glassy carbon electrode based on Langmuir–Blodgett technique: application to the detection of epinephrine , 2012, Journal of Solid State Electrochemistry.

[446]  Fei Xu,et al.  Highly Sensitive and Selective Determination of Dopamine in the Presence of Ascorbic Acid Using Gold Nanoparticles‐Decorated MoS2 Nanosheets Modified Electrode , 2013 .

[447]  W. Barreto,et al.  A Raman and UV-Vis study of catecholamines oxidized with Mn(III) , 1998 .

[448]  Yu Zhang,et al.  Simultaneous voltammetric determination for DA, AA and NO₂⁻ based on graphene/poly-cyclodextrin/MWCNTs nanocomposite platform. , 2011, Biosensors & bioelectronics.

[449]  Jinwoo Park,et al.  In vivo voltammetric monitoring of norepinephrine release in the rat ventral bed nucleus of the stria terminalis and anteroventral thalamic nucleus , 2009, The European journal of neuroscience.

[450]  Dexiang Feng,et al.  A facile one-step electrochemical fabrication of reduced graphene oxide–mutilwall carbon nanotubes–phospotungstic acid composite for dopamine sensing , 2013 .

[451]  Ling-bo Qu,et al.  Nano-sized copper oxide/multi-wall carbon nanotube/Nafion modified electrode for sensitive detection of dopamine , 2013 .

[452]  Xiaogang Qu,et al.  Electrochemical detection of dopamine using porphyrin-functionalized graphene. , 2012, Biosensors & bioelectronics.

[453]  G. Rivas,et al.  Highly selective dopamine quantification using a glassy carbon electrode modified with a melanin-type polymer , 2001 .

[454]  Xinhua Lin,et al.  Electrocatalytic property of poly-chromotrope 2B modified glassy carbon electrode on dopamine and its application , 2007 .

[455]  Yongxin Li,et al.  Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode , 2006 .

[456]  Dan Du,et al.  Electrochemical behavior of epinephrine at l-cysteine self-assembled monolayers modified gold electrode. , 2002, Talanta.

[457]  A. Mostafavi,et al.  First Electrochemical Report for Simultaneous Determination of Norepinephrine, Tyrosine and Nicotine Using a Nanostructure Based Sensor , 2014 .

[458]  M. L. Rodriguez-Mendez,et al.  Iron phthalocyanine in non-aqueous medium forming layer-by-layer films: growth mechanism, molecular architecture and applications. , 2010, Physical chemistry chemical physics : PCCP.

[459]  S. A. John,et al.  Selective determination of norepinephrine in the presence of ascorbic and uric acids using an ultrathin polymer film modified electrode , 2011 .

[460]  M. Elimelech,et al.  Environmental applications of carbon-based nanomaterials. , 2008, Environmental science & technology.

[461]  J. Oni,et al.  Simultaneous voltammetric determination of dopamine and serotonin on carbon paste electrodes modified with iron(II) phthalocyanine complexes , 2001 .

[462]  R. Wightman,et al.  Rapid Dopamine Signaling Differentially Modulates Distinct Microcircuits within the Nucleus Accumbens during Sucrose-Directed Behavior , 2011, The Journal of Neuroscience.

[463]  D. Arrigan,et al.  Electrochemistry of dopamine at the polarised liquid|liquid interface facilitated by an homo-oxo-calix[3]arene ionophore , 2008 .

[464]  Huafeng Yang,et al.  Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine. , 2010, Talanta.

[465]  M. Mazloum‐Ardakani,et al.  Simultaneous determination of epinephrine and uric acid at a gold electrode modified by a 2-(2,3-dihydroxy phenyl)-1, 3-dithiane self-assembled monolayer , 2011 .

[466]  V. Mareček,et al.  Selective complexation of biogenic amines by macrocyclic polyethers at a liquid/liquid interface , 1991 .

[467]  F. Karimi,et al.  ZnO/CNTs nanocomposite/ionic liquid carbon paste electrode for determination of noradrenaline in human samples , 2014 .

[468]  Y. Yang,et al.  CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. , 2014, Biosensors & bioelectronics.

[469]  J. Justin Gooding,et al.  Self-Assembled Monolayers into the 21st Century: Recent Advances and Applications , 2003 .

[470]  D. Bouchta,et al.  A novel electrochemical synthesis of poly-3-methylthiophene-gamma-cyclodextrin film Application for the analysis of chlorpromazine and some neurotransmitters. , 2005, Biosensors & bioelectronics.

[471]  Liping Lu,et al.  Voltammetric Behavior of Dopamine at ct-DNA Modified Carbon Fiber Microelectrode , 2003 .

[472]  Shu-Hua Cheng,et al.  A strategy for the determination of dopamine at a bare glassy carbon electrode: p-Phenylenediamine as a nucleophile , 2006 .

[473]  C. Amatore,et al.  Comparison of apex and bottom secretion efficiency at chromaffin cells as measured by amperometry. , 2007, Biophysical chemistry.

[474]  Ronald J. Mascarenhas,et al.  Multi-walled carbon nanotube/poly(glycine) modified carbon paste electrode for the determination of dopamine in biological fluids and pharmaceuticals. , 2013, Colloids and surfaces. B, Biointerfaces.

[475]  Christopher B. Jacobs,et al.  Polyethylenimine Carbon Nanotube Fiber Electrodes for Enhanced Detection of Neurotransmitters , 2014, Analytical chemistry.

[476]  R. Wightman,et al.  Preferential Enhancement of Dopamine Transmission within the Nucleus Accumbens Shell by Cocaine Is Attributable to a Direct Increase in Phasic Dopamine Release Events , 2008, The Journal of Neuroscience.

[477]  Y. Tsai,et al.  Amperometric biosensors based on multiwalled carbon nanotube-Nafion-tyrosinase nanobiocomposites for the determination of phenolic compounds , 2007 .

[478]  Aysegul Kutluay,et al.  An electrochemical sensor prepared by sonochemical one-pot synthesis of multi-walled carbon nanotube-supported cobalt nanoparticles for the simultaneous determination of paracetamol and dopamine. , 2014, Analytica chimica acta.

[479]  D. M. Fernandes,et al.  Novel electrochemical sensor based on N-doped carbon nanotubes and Fe3O4 nanoparticles: simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. , 2014, Journal of colloid and interface science.

[480]  Yuzhong Zhang,et al.  Study on the electrochemical behavior of dopamine with poly(sulfosalicylic acid) modified glassy carbon electrode , 2001 .

[481]  Yanxiu Zhou,et al.  Amperometric biosensor based on tyrosinase immobilized on a boron-doped diamond electrode. , 2007, Biosensors & bioelectronics.

[482]  M. Karve,et al.  Glutaraldehyde activated eggshell membrane for immobilization of tyrosinase from Amorphophallus companulatus: application in construction of electrochemical biosensor for dopamine. , 2008, Analytica chimica acta.

[483]  Molecularly imprinted poly[tetra(o-aminophenyl)porphyrin] as a stable and selective coating for the development of voltammetric sensors , 2010 .

[484]  T. Yousefi,et al.  A nickel hexacyanoferrate and poly(1-naphthol) hybrid film modified electrode used in the selective electroanalysis of dopamine , 2012 .

[485]  Frank Marken,et al.  Nanoparticles in electrochemical sensors for environmental monitoring , 2011 .

[486]  S. Cosnier,et al.  Multiwalled Carbon Nanotube‐CaCO3 Nanoparticle Composites for the Construction of a Tyrosinase‐Based Amperometric Dopamine Biosensor , 2013 .

[487]  Wei Sun,et al.  Poly(methylene blue) functionalized graphene modified carbon ionic liquid electrode for the electrochemical detection of dopamine. , 2012, Analytica chimica acta.

[488]  B. Satpati,et al.  Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. , 2013, Colloids and surfaces. B, Biointerfaces.

[489]  K. Ho,et al.  On the amperometric detection and electrocatalytic analysis of ascorbic acid and dopamine using a poly(acriflavine)-modified electrode , 2009 .

[490]  R. Wightman,et al.  Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely‐moving rats , 2004, Journal of neurochemistry.

[491]  F. Yin,et al.  Studies on the electrocatalytic oxidation of dopamine at phosphotungstic acid–ZnO spun fiber-modified electrode , 2013 .

[492]  Yu-Sheng Wang,et al.  Controllable synthesis of nitrogen-doped graphene and its effect on the simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid , 2013 .

[493]  Sonja Hatz,et al.  Listening to the brain: microelectrode biosensors for neurochemicals. , 2005, Trends in biotechnology.

[494]  Ling Mei Niu,et al.  Characterization of an ultrasensitive biosensor based on a nano-Au/DNA/nano-Au/poly(SFR) composite and its application in the simultaneous determination of dopamine, uric acid, guanine, and adenine , 2013 .

[495]  T. Łuczak Comparison of electrochemical oxidation of epinephrine in the presence of interfering ascorbic and uric acids on gold electrodes modified with S-functionalized compounds and gold nanoparticles , 2009 .

[496]  M. Suaud-Chagny,et al.  Dopaminergic transmission in STOP null mice , 2005, Journal of neurochemistry.

[497]  K. Zhuo,et al.  Ionic Liquid Functionalized Graphene‐Based Electrochemical Biosensor for Simultaneous Determination of Dopamine and Uric Acid in the Presence of Ascorbic Acid , 2014 .